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Chapter 1

Introduction

1.1 The nature of light

According to Maxwell light propagates as a wave with a wavelength A\. In vacuum, the speed
of light is ¢ = 2.997924 58 x 10%m /s. However, PlanckE] found that the energy of light radiated
from a hot black body is emitted in quanta, the energy of which is in proportion to the observed
frequency f = ¢/), so that each quantum or “photon” has an energy W = hf; Planck’s constant
is h = 6.6260755 x 1073*Js. Further, it was shown by de Brogli that each particle having
momentum p may be associated with a wavelength A\ = h/p. Obviously, the nature of light is
ambiguous. Einstein] formulated®} “Light is like the French philosopher Voltaird®} Voltaire was
born catholic, converted as a young man to Protestantism, and returned to Catholicism shortly
before his death. Light is born as a particle, lives as a wave, and dies as a photon when being
absorbed.”

1.2 Communication with light

An optical communication system uses lightwaves in a vacuum wavelength range 0.6 pm ... 1.2 ym
< A < 1.6 pm corresponding to carrier frequencies f = ¢/ of 500 THz...250 THz > f > 190 THz.
A communication system is referred to as a point-to-point transmission link. When many trans-
mission links are interconnected with multiplexing or switching functions, they are called a com-
munication network.

The basic principle of an optical transmission link is shown in Fig.[I.1] At the transmitter,
an electrical data signal is converted to the optical domain, where data can be encoded in the
amplitude and/or the phase of the optical carrier wave. The optical signal is transmitted through
optical fibers. For transmission over long distances, optical amplifiers are used to compensate for
propagation loss. The transmission capacity of an optical fiber can be significantly increased by
wavelength-division multiplexing (WDM) schemes, which exploit a multitude of optical carriers
at different wavelengths, all of which can independently be used for data transmission.

1James Clerk Maxwell, mathematician and physicist, « Edinburgh 13.6.1831, f Cambridge 5.11.1879. Professor
in Cambridge, UK

2Max Planck, physicist, « Kiel 23.4.1858, 1 Gottingen 4.10.1947. Professor in Kiel and Berlin. Nobel prize in
physics 1918

3Louis Victor, 7. Duke of Broglie (since 1960), named Louis de Broglie, physicist, x Dieppe 15.8.1892,
t Louveciennes (Département Yvelines) 19.3.1987. Nobel prize in physics 1929 (together with O. W. Richardson)

4 Albert Einstein, physicist, » Ulm 14.3.1879, 1 Princeton (NJ) 18.4.1955. “Technical expert 3rd class” at the
patent office in Bern (1902-09). Professor at the University of Zurich and Prague (1911/12) and at the Swiss
Federal Institute of Technology (ETH) in Zurich. Emigration to the USA in 1933. Professor at the Institute for
Advanced Study in Princeton (NJ). American citizen since 1940. Formulated in 1905 (1914-16) the special (general)
theory of relativity. Nobel prize in physics 1921

5Jahns, J.: Photonik. Grundlagen, Komponenten und Systeme. Miinchen: Oldenbourg-Verlag 2001. Page 9

6Pseudonym or pen-name of Francois Marie Arouet, philosopher and writer, x Paris 21.11.1694, 1 Paris 30.5.1778



\ Optical .
ﬂm—”L% Transmitter - -
Data in Fiber

Optical
- Receiver ”fUW_ﬂL

' Fiber Ponte ‘
Opticaﬂ Data out
Amplifier
L T 4 s 11 . ¥
electrical optical electrical

Figure 1.1: Optical point-to-point transmission link: An electrical signal is transformed into an
optical data signal by an optical transceiver. The optical signal is transmitted through an optical
fiber and amplified. At the receiver side, the optical signal is converted back to the electrical
domain. Data can be encoded in the amplitude and the phase of the optical signal.

Advantages of optical communications

Obviously, optical communication systems can replace conventional electrical systems only if there
is some advantage to be gained, which justifies the additional expenses of a twofold conversion
current-light and light-current. Some important advantages of optical signal transport are:

e Large transmission capacity because of the large fiber bandwidth in the order of (250 —
190) THz = 60 THz

¢ Long transmission reach due to low fiber loss, about 2.2,0.35,0.15dB /km at A =
0.85,1.3,1.55 ym, i.e., down to 3dB loss for a fiber length of L = 20km corresponding
to a power attenuation by a factor of only 2

e Immunity to electromagnetic interference because of the high carrier frequency, and
because of the strong confinement of the light inside the fiber

Technological milestones in optical communications

The first commercial optical fiber communication system were deployed in the 1970s, with data
rates of a few Mbit/s. Since then, optical communications has seen tremendous progress, and
current record data rates that can be transmitted through single-mode fibers are of the order of
tens of Thit/s. Three milestones of lightwave technology are especially noteworthy:

e Low-loss fibers: Following an earlier suggestionﬂﬁ] the first low-loss fibers were produced
ﬂ in 1970 reducing the loss from 1000dB /km to below 20dB /km. Further progresd"
resulted by 1979 in a loss of only 0.2dB /km near A = 1.55um. The ultimate low losg'!|
of 0.154dB / km for fibers with a silica (SiO2) core and a fluorine-doped cladding is limited
only by the amorphous structure of silica (Rayleigh scattering) and was reached in 1986.

¢ Semiconductor lasers: Although semiconductor lasers were first madd™| in 1962, their
use became practical only after 1970 when GaAs lasers operating continuously at room

"Kao, K. C.; Hockham, G. A.: Proc. IEE 113 (1966) 1151

8Werts, A.: Onde Electr. 45 (1966) 967

9Kapron, F. P.; Keck, D. .B; Maurer, A. D.: Appl. Phys. Lett. 17 (1970) 423

10Miya, T.; Terunuma, Y.; Hosaka, T.; Miyashita, T.: Ultimate low-loss single-mode fibre at 1.55 ym. Electron.
Lett. 15 (1979) 106-108

HKanamori, H.; Yokota, H.; Tanaka, G.; Watanabe, M.; Ishiguro, Y.; Yoshida, I.; Kakii, T.; Itoh, S.; Asano, Y.;
Tanaka, S.: Transmission characteristics and reliability of pure-silica-core single-mode fibers. IEEE J. Lightwave
Technol. LT-4 (1986) 1144-1149

I2Nasledov, D. N.; Rogachev, A. A.; Ryvkin, S. M.; Tsarenkov, B. V.: Fiz. Tverd. Tela. 4 (1962) 1062 (Soviet
Phys. Solid State 4 (1962) 782



temperature were available/™|

e Optical fiber amplifier: Finally, it was only after the invention and perfection of the
erbium-doped fiber amplifier (EDFA) in 1986 that optical communication became as

powerful as it is today

Short- and long-reach optical data transmission

Large-scale deployment of optical transmission systems started in the 1990s when broadband
erbium-doped fiber amplifiers became available. Optical data transmission was first deployed in
long-haul links, where increasing data rates and large transmission distances justified the additional
technical effort. In the late 1990s several WDM systems were installed across the Pacific and the
Atlantic oceans in response to the data traffic growth induced by the Internet, see Fig.[I.2] Today,
40 Gbit/s or even 100 Gbit/s of data are transmitted per wavelength channel, and modern WDM
systems can have more than 100 wavelength channels. A record data rate of 101.7 Thit/s was
recently transmitted through a single-mode fiber in a laboratory experiment [28].

However, optical data transmission is no longer limited to long-haul transmission. Internet
data traffic is currently increasing with annual rates of more than 30 %. Short- and medium-reach
interconnects in data centers currently represent the capacity bottleneck in data networks. As
a consequence, electrical interconnects are currently replaced by so-called active optical cables
(AOC). AOC plug directly into standard copper cable ports; optical transmitters and receivers
contained in the cable ends convert the signal back and forth for optical transport over fiber,
see Fig.[[.3] Similarly, Optical systems for rack-to-rack data transmission are currently being
installed in high-performance computers (HPC) and warehouse-scale computers (WSC), where
the interconnect bandwidth limitations are currently the most severe obstacle to further increase
performance while decreasing the power consumption.

In the future, it is anticipated that the advantages of optical techniques will pay out for
transmissions over even shorter distances: Board-to-board interconnects will be used to transmit
data between printed circuit boards that reside within the same rack, Fig.[[.4 These systems
require compact optical transmitters and receivers, that are integrated with electronic circuitry
on the same chip. In a long-term perspective, optical transmission might even be used for on-chip
communication, Fig.[I.5] In this context, silicon nanophotonics and plasmonics are active areas of
current, research.

13 Alferov, Z.: IEEE Sel. Topics Quantum Electron. 6 (2000) 832

MPpoole, S. B.; Payne, D. N.; Mears, R. J.; Fermann, M. E.; Laming, R. E.: J. Lightwave Technol. 4 (1986) 870

15 Why need amplifiers be distributed along a transmission distance? Due to attenuation in the transmitting fibre
the optical signal decays exponentially with the transmission span. Practical spans without amplification are about
70km. Why are the spans so short (see Footnote on Page ?

A transatlantic transmission from New York to London experiences an attenuation of about 1400dB (7000 km @
0.2dB /km). Thus, for receiving one photon in London we have to inject 10149 photons into the optical fibre end in
New York. If all the mass of our sun (msuyn = 3 x 1033 g) having an energy equivalent of Wsyn = mc? = 1.8 x 1047 J
could be converted into photons with a photon energy hf = 6 x 10734 Jsx 200THz = 1.2 x 10~ J, we had
generated 1.5 x 1096 photons at a wavelength of 1.55 um (f ~ 200 THz), and could bridge a span with 660 dB loss,
corresponding to a transmission distance of 3300km only. For a direct transmission New York — London we thus
had to evaporate 10140/10%6 = 1074 suns.

This is quite a bit. The (observable) universe is estimated to have an extension of 1.4 x 1010 light years. Its
mean density is supposed to be 3x1073% g /cm3 (http://curious.astro.cornell.edu/question.php?number=342).
Therefore, the universe’s mass (comprising not only suns) is mupiv = 7 X 1054 g, and its energy equivalent is
Winiv = Munive® = 6 x 108 J corresponding to 4.7 x 1087 photons at a wavelength of 1.55 um. If we are able to
receive one photon then the maximum span will be 877dB /(0.2dB /km) = 4385km. However, for bridging the
distance New York — London in one go we had to burn 10'40/1087 = 10%3 universes!

16Calculations stimulated by an oral presentation of N. J. Doran (S. K. Turitsyn, M. P. Fedoruk, N. J. Doran and
W. Forysiak: Optical soliton transmission in fiber lines with short-scale dispersion management. 25th European
Conference on Optical Communication (ECOC’99), Nice, France, September 26-30, 1999). — Universe’s mass
calculations and web address contributed by Dipl.-Phys. Jan Briickner, Karlsruhe, Germany, June 23, 2005



Figure 1.2: Global optical communication Networks: In the 1990s, several WDM systems were
installed across the Pacific and the Atlantic oceans in response to the growth of Internet traffic,
(Source: Alcatel-Lucent).
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Figure 1.3: (a) Optical interconnects are playing an increasingly important role for communication
networks in large-scale data centers. Communication is performed by so-called active optical cables
(AOC). AOC have electric connectors, while data transmission in the cable is performed optically.
(b) Conversion between optical and electrical signals is performed by optical transmitter and
receiver chips that are integrated into the connector housing of the cable (Source: Luxtera).
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Figure 1.4: Optical board-to-board interconnects: (a) In data centers and high-performance com-
puters, blade servers are organized in racks and connected to a common backplane for data ex-
change. To increase communication bandwidth, short-reach optical board-to-board interconnects
are subject to current research. (b) Board-board optical interconnects require compact chip-scale
transmitter and receiver modules as well as novel concepts for optical connections between printed
circuit board (PCB) cards and optical backplanes (Source: IBM).
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Figure 1.5: Optical on-chip communications. (a) Communication within microprocessor chips
is currently handled by a stack of usually more than ten layers of metal interconnects. These
interconnects are limited in bandwidth and prone to crosstalk. (b) Future concepts of optical
on-chip data transmission are subject to ongoing research. Scenarios comprise 3D integration of
dedicated processor, memory, and network layers. (Source: IBM).

Waveguides and fibers

Optical waveguides and fibers are essential building blocks of all aforementioned optical communi-
cation systems: Integrated optical waveguides are the basis of nearly any passive or active devices
that are used in optical data communications. Fused silica fibers are the transmission medium in
long-haul systems, spanning distances of thousands of kilometres. Polymer fibers and waveguides
are used for short-reach interconnects, in-house communications and board-to-board links. More-
over, optical waveguides play an important role for other applications: Optical sensing, metrology
and biophotonics are unthinkable without dedicated waveguide concepts.

In the following chapters, we will introduce the fundamental principles of optical waveguiding
together with the corresponding mathematical models that are required for quantitative de-
vice analysis. An overview of current waveguide and fiber technologies will be given, and ba-
sic waveguide-based components will be discussed. The interested reader is referred to related
textbooks in the field of photonics and optical waveguiding:

e B. E. A. Saleh, M. C. Teich, 'Fundamentals of Photonics’, Second Edition; John Wiley &
Sons, 2007, ISBN 978-0-471-35832-9

e K. Okamoto, ’Fundamentals of Optical Waveguides’, Second Edition, Elsevier Academic
Press 2006, ISBN 978-0-12-525096-2

e K. Tizuka, 'Elements of Photonics’, Volume II; John Wiley & Sons, 2002, ISBN 0471408158



Chapter 2

Fundamentals of wave propagation
1n optics

In this chapter, we will review the fundamentals of optical wave propagation. Starting from
Maxwell’s equations, we will derive the wave equations for inhomogeneous media and simplify
them for the case of weak inhomogeneities. We will further analyze the interaction of optical
waves with media, and derive simple models to describe the frequency dependence of the refractive
index for both dielectric and metallic materials. This leads to material dispersion and dispersive
broadening of optical signals. We will quantitatively analyze these effects.

In the following sections, we will make use of some basic relations from vector differential
calculus. For convenience, a short summary of the most relevant relations is given in Section [A.2.2]
in the Appendix.

2.1 Maxwell’s equations in optical media

2.1.1 Maxwell’s equations and constitutive relations

In the absence of any free carriers and currents, Maxwell’s equations take the following form [14]:

V-D(r,t) =0 (2.1)
V x E(r,t) = —% (2.2)
V- B(r,t) =0 (2.3)
V x H(r,t) = w (2.4)

The vector r = (x,,2)T defines a point in three-dimensional space. In optics, media are generally
assumed to be nonmagnetic. The magnetic flux density B is then related to the magnetic field H
by

B(I‘,t) = }U'OH(rvt)a (25)

where g = 1.25664 x 107 Vs /(Am) is the magnetic permeability of vacuum. The relation
between the electric field E and the electric displacement D can be expressed as

D(r,t) = eoE(r,t) + P(r,?), (2.6)

where €y = 8.85419 x 10712 A's /(V m) is the electric permittivity of vacuum, and where P denotes
the electric polarization. These equations are also referred to as constitutive relations.



2.1.2 Monochromatic waves and frequency-domain analysis

In many cases, monochromatic electromagnetic fields are considered

¥(t) = Re{&(w)exp (jwt)}, (2.7)

where ¥ represents a complex wave amplitude, and w = 27 f is the angular frequency. Maxwell’s
equations can then be written as

V:-D(r,w)=0 (2.8)
V x E(r,w) = —jwB(r,w) (2.9)
V. B(r,w) =0 (2.10)
V x H(r,w) = jwD(r,w), (2.11)

and the constitutive relations are given by

E(r,w) = /U'Oﬂ(rvw)a (212)
D(r,w) = ¢E(r,w) + P(r,w). (2.13)
The same set of equations is obtained, when using Fourier transforms @(w) of time-domain quanti-

ties ¥ (t) rather than complex amplitudes ¥ of monochromatic waves. The Fourier transformation
is given by

+o00

¥ (w) = /u'/(t)exp(—jwt)dt (2.14)
T B

() =5 / ¥ (w) exp (jwt) dw (2.15)

For a monochromatic electromagnetic field ¥(t) = Re {¥(wo) exp (jwot)}, oscillating at an angular
frequency wy, the Fourier transform and the complex time-domain amplitudes are related by

T() = ((e0)d (0 — ) + 2" (w0)8 (2 + o) (216)
where § represents the Dirac delta function. In linear optics, Fourier transforms and complex
wave amplitudes are interchangeable, whereas, in nonlinear optics, the additional factor of % is
important and may lead to confusion if complex wave amplitudes and Fourier transforms are not
clearly distinguished. For the remainder of this lecture, we will largely use the notation for complex
wave amplitudes ¥ (w), keeping in mind that the corresponding quantity can also be understood

as the Fourier transform ¥(w) of a non-harmonic time-domain quantity ¥ (t) .

2.1.3 Eletric susceptibility and complex refractive index

The electric susceptibility represents the response of the electric polarization P(r,t) to the electric
field E(r,t). In real media, the polarization follows the electric field with a time delay that can be
described by a convolution with a causal influence function x(r,t), where x(r,t < 0) = 0. In the
frequency-domain, this corresponds to a multiplication with the corresponding complex transfer
function x(r,w),

Pl t) = e /jo (5 DE(r, ¢ — 1) dr (2.17)
P(r,w) = eox(r,w)E(r,w) (2.18)



The constitutive relation (2.13) in the frequency domain can then be reformulated,

D(r,w) = ¢E(r,w) + P (r,w)
= (1+ x(r,w)) E(r,w) (2.19)
= eo€, (r,w)E(r,w)

= eon?(r,w)E(r,w).
The complex relative dielectric constant €, and the complex refractive index n are related by
&(r,w) =1+ x(r,w) = n’(r,w). (2.20)

From this relation, we can derive various relationships of the real and imaginary parts of ¢, and n,

ﬂ:n_jnh ETZET‘_jeT’ia

€r = n* — nzzv €ri = 2nny,

n? = 3¢ (1 +V1+ 6%/6?) ; n; = e/(2n), (2.21)
n & \/€ (for |es| <€) n; = €/ (24/€ ),

n & \/|eri|/2 (for |eqi| > €) n; & sgn(eri)\/|€ril /2.

Note the somewhat surprising negative signs for the imaginary parts in Eq. result from the
convention to assign positive values of n; to lossy media, whereas negative values of n; correspond
to media with gain, see Section [2.2] for a more detailed discussion.

In general optics, the phenomenon of a frequency-dependent refractive index and hence a
frequency-dependent phase velocity is also referred to as dispersion. This more general notion of
dispersion differs slightly from the use of the term in optical communications, where dispersion is
used as a synonym for “group velocity dispersion” or “group delay dispersion”, thereby embracing
all effects that lead to a frequency-dependent group velocity, see Section .

2.2 Wave equation and plane waves

2.2.1 Wave equations in the general form

Reshaping of Maxwell’s equations - leads to the vector wave equations for the electric
and the magnetic fields,

V2E(r,w) +V (m -E(r, w)) + ke (r,w)E(r,w) =0 (2.22)
V2H(r,w) + V:EE'I‘::;) x (V x H(r,w)) + ke, (r,w)H(r,w) = 0, (2.23)

where kg = w/c represents the free-space wavenumber. For arbitrary media with strong spatial
variations of € (r,w), these equations cannot be solved analytically. Weakly inhomogeneous media,
however, allow for some simplifications.

2.2.2 Wave equations for weakly inhomogeneous media

For homogeneous or weakly inhomogeneous media, where the dielectric constant ¢,(r,w) does not
change significantly over an optical wavelength, we find that|Ve,/e.| < |nkg| (see problem set),
and we can neglect the second expressions on the left-hand sides of Eqgs. and in
comparison to the first ones. This leads to the so-called Helmholtz equations for the electric and
magnetic fields,



V2E(r,w) + kie, (r,w)E(r,w) = 0 (2.24)
V2H(r,w) + kie (r,w)H(r,w) =0 (2.25)

Note that, in contrast to Egs. (2.22) and (2.23), the vector components of the magnetic and
electric fields are now decoupled, i.e., Eqgs. (2.22)) and (2.23) can each be decomposed into three

scalar differential equations for three vector components.
2.2.3 Plane waves in isotropic homogeneous media

For isotropic homogenous media, € (r,w) = €. (w) is scalar, and the equations are solved by so-
called plane waves of the form

E(r,t) =Re {E(r,w) e’} = Re {Eo ej(“’t*g)} , (2.26)

H(r,t) = Re {H(r,w)el“'} = Re {ﬂo ej(‘”t*h)} , (2.27)

where the wave vector k defines the direction of propagation and obeys the relation

k? = ke (w). (2.28)

The surfaces of equal phase (“phase fronts”) are planes that are normal to k. Phase fronts travel
with the phase velocity v, = ¢/n (w).

For a plane wave, the magnetic field can be derived from the electric field and vice versa.
Introducing the plane-wave solution for the electric field, Eq. , into Maxwell’s curl equations

(2.2) and (2.4), we find

1
H — — kxE,, 2.29
H, - ——kxE, (229)
1
E, = - k x Hy,. 2.30
- WEQYEy X o ( )
Maxwell’s divergence equations (2.1)) (2.3) lead to
k-E,=0 (2.31)
k-H, = 0. (2.32)

In other words: The vectors (k, Eq, Hy) are mutually orthogonal and form a right-handed system.
Note that the wave vector k is in general a complex number,

k =k —jk; = koney. (2.33)

where ey denotes the unit vector in the direction of propagation. The time-averaged energy flux
carried by the wave is obtained from the real part of the complex Poynting vector S [14],

Re {8} = Re {;E@,w) x HX(r, w>} = By e 2 (2.34)

2w

If we assume a plane wave propagating into positive z-direction, then k = kgne, and the power
decays as e~ **, where the power attenuation coefficient « is linked to the imaginary part of the
refractive index by

Due to the convention to use negative signs for the imaginary parts in Eq. (2.21), a positive value
of n; corresponds to a positive attenuation coefficient o and therefore to optical loss, whereas
negative values of n; and a occur for media that show optical gain.
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2.3 Material dispersion, Kramers-Kronig relations and Sell-
meier equations

2.3.1 Causality and Kramers-Kronig relations

If an electric field E penetrates a dielectric medium, it generates an electric polarization P. In
the time-domain this can be described by a convolution with an influence function x(¢), which
corresponds to a multiplication with the Fourier transform x(f) of the influence function in the
frequency domain, Eqs. and . The Fourier transform is in general a complex function
of frequency f = w/ (27),

X(f) = x(f) +ixi(f)-

The time-domain influence function must be causal, i.e., x(t < 0) = 0, since no electric polarization
can be induced before the electric field penetrates the medium. As a consequence, the real and
the imaginary part of x(f) are related by the Hilbert transform,

1 Xz(fO)
L

1 x(fo)
= ﬂp R g dfo (2.37)

dfo (2.36)

In these relations, P ffooo ... dfy denotes the Cauchy principal value of the integral, i.e., the integral
must be interpreted as a limiting value for which the integration limits approach the pole at fo = f
symmetrically from both sides,

x(fo) 7= X(fo) x(fo)
Pl gy = (/oo fo—f 0T fﬁfo fdf°> (239

Note that x(¢) is real and hence x(f) = x(—f) and x;(f) = —xi(—f). Inserting these relations in
Egs. (2.36) and (2.37)), the so-called Kramers-Kronig relations can be derived:

x(f) = —%7’ ; J})OXZ(J;Z) dfo (2.39)
fp/ fX fo > df (2.40)

These relations allow us to calculate either the imaginary or the real part of the susceptibility if
the respective other quantity is known. This implies that the absorption spectrum of a medium is
linked to its frequency-dependent refractive index and vice versa. Absorption and dispersion are
intimately related.

For a constant x(f), i.e., x(f) = €(f) — 1 = consty, we find x;(f) = €-:(f) = 0 from Eq. (2.36),

which implies x(f) = 0 and ¢,.(f) = 1, Eq. - There is hence no dispersionless medium with
n # 1! Real media with refractive 1ndex n # 1 always have loss (or gain) in some frequency ranges,

and the refractive index is always frequency-dependent. x(f) = const; and x; ~ 0 is only possible
in certain frequency ranges.

2.3.2 The Lorentz oscillator model of dielectric media

To better understand the frequency dependence of the refractive index, let us consider a simple
model for the interaction of an electric field E with a dielectric medium. Assuming that the
medium does not contain any free charges, the external electric field leads to a displacement of
charges within the individual atoms and molecules, thereby inducing an electric dipole moment,

11



Fig.2.1] The electric polarization P is then given by the dipole moment that is induced per unit
volume,

P =Np, (2.41)

where N is the number of charges per unit volume. Assuming E =F,e,, and denoting the dis-

(@ E } (b)

Cx3s

§
.'.—>
§
;e
; X
s

-
b

& g_ & E; @ /‘d:xéx

Figure 2.1: Lorentz model of electrons that are bound to a positively charged nucleus. (a) An
external electric field F leads to a displacement of a bound electron and hence to a shift d of the
center of negative charges away from the positively charged nucleus. This causes an electric dipole
moment that oscillates with the frequency of the external field. (b) For an electric field oriented
along the z-direction, the problem can be simplified to a one-dimensional equation of motion for
the electron. (Figure adapted from [30]).

placement of a single bound electron with x, the dipole moment p = p,e, is given by p, = —=xe.
The displacement of the electron obeys Newton’s second law, which states that the sum of forces
(driving plus restoring force) equals electron mass m, times acceleration,

d’z dx
Me——5 = —el, — mewfx — me'y,«a,

T (2.42)

where 7, < w,. Solving this equation for a monochromatic excitation E, = Re{E, exp (jwt)},
the complex electric polarization is obtained, and the dielectric susceptibility can be derived,

2

w
=vyyg—- 2.43
X(w) Xow% S S (2.43)
where
Ne?
Xo = 5 (2.44)
€M W2
The real and the imaginary parts of the complex electric susceptibility hence read
(w2 — w?) w?
x(w) = —2r " Yo (2.45)
SR L
2
Wrly
Xi(w) = — X0- (2.46)

(WF =)+ w7

From these relations, we may deduce some very general properties of dielectric media:

e Well below resonance, i.e. for w < w, we find x =~ xo and x; ~ 0. In the low-frequency
limit, dielectric media hence exhibit only refraction, but no absorption.

12



e Well above resonance, i.e. for w > w, we find x = x; =~ 0. The medium hence behaves
essentially like free space; electrons cannot any more “follow” the electric field because it
changes too fast. As a consequence, most materials appear transparent at X-ray frequencies
and have a refractive index close to unity .

e Right at resonance, i.e. for w = w, we find x ~ 0 and y; = Qxo, where Q = w,/v,. This
implies strong absorption and a strongly frequency-dependent refractive index.

Eqgs. and (2.46)) lead to a characteristic behavior of the refractive index near a resonance
line, see Fig. . For real media, different electrons exhibit different resonance frequencies,
Fig. (2.3), and the real and imaginary parts of the susceptibility are given by a sum over the
various contributions,

(wz _ wz) w2

X(w)=> R Xov (2.47)
2
w TVwru
xiw) ==Y ! . (2.48)

- ———————— s ~ 11y

wo w

Figure 2.2: (a) Absorption coefficient «, and (b) refractive index n of a dielectric medium near
resonance frequency wg. The absorption spectrum assumes the shape of a narrow line, whereas
the refractive index undergoes a typical pattern which shows an increased refractive index for
frequencies below resonance and a decreased refractive index for frequencies above resonance
(Figure adapted from [30]).

T 1—'/\\\/(/\
- n V

< f\ ]
i

n

0 Wy — D (08}

Figure 2.3: In real media, the real and imaginary parts of the susceptibility are given by a sum
over the contributions of various electrons.



Example: Lenses for X-ray radiation

At X-ray frequencies, w > w,, we find x = x; = 0 and y < 0. Hence, materials are in essence
transparent for these wavelengths, and X-rays are widely used for tomographic analysis of the
interior structures of biological and technical samples. At the same time, the refractive indices at
X-ray frequencies are close to unity, and it is therefore challenging to produce refractive optical
components. X-ray lenses are therefore composed of arrays of single lens elements, Fig. .
In contrast to normal optics, focusing X-ray lenses must have concave cross sections, since the
refractive index is smaller than unity.

2
A

)

[HEETECTEELL

>
'
&
<
&
>

-

: ‘i; ST

] 3 mm
[ —)
IMT / FZK, A. Last

Figure 2.4: To obtain sufficient refractive power despite refractive indices n that are close to
unity, X-ray lenses are composed of an array of individual lens elements. Since n < 1 for X-ray
frequencies, focussing lenses must have concave shapes. (Source: A. Last, KIT-IMT)

2.3.3 The Drude model of conductive media

To model the optical properties of metallic media, we can perform an analysis similar to the one
presented in Section[2.3.2] The only difference is that we are now dealing with free charges that are
not bound to any nucleus. The restoring forces hence vanish and we may set w, = 0 in Eq. (2.42).
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The complex electric susceptibility can hence be written as

w? 1 w?
__r ~__D 2.49
X =~ h iy (2.49)
where the plasma frequency w,, is given by
Ne?
2

= . 2.50
wp = (2.50)

From these relations, we may again deduce some very general optical properties of metallic media:

e For w < w, we have ¢, = 1 — wplw? < 0 . As a consequence, both n and k are purely
imaginary, which leads to attenuation of the wave without propagation (“forbidden band”).
In addition, the wave impedance becomes imaginary, i.e., waves impinging on the material
from outside are reflected at the surface.

e For w>wy, wefind e, =1— wp/w? > 0 . In this case, both n and k are purely real, i.e., the
metal behaves like a lossless dielectric, but features unique dispersion characteristics. This
band is referred to as the plasmonic band.

e For w = w, we have ¢, = 0 and both n and k vanish. In this case, the wave does hence
not travel in the conductive medium. The electric current density oscillates; the quantum
quasi-particle associated with these oscillations is called a plasmon.

The special properties of metallic materials are important for plasmonic wave propagation, see
Section [3.5] for a more detailed discussion.

2.3.4 Sellmeier equations

If dielectric media interact with an optical wave with a frequency far from any material resonances,
we have |w, — w| > 7, and the complex susceptibility can be approximated by
2
wT‘
W) ———— 2.51
X©)® 7 (251)
In this case, x is approximately real and absorption is negligible. In real media, multiple resonances
corresponding to different lattice and electronic vibrations contribute to the refractive index n.
The dependence of n on frequency can hence be written as
2 17 A2
W14 Xt =1 ) xess (2.52)
v v v v

The relation is known as the Sellmeier equation. The Sellmeier coefficients yo,and A, are tabulated
in reference books on optical materials [26] or material data sheets. The Sellmeier equations are a
useful tool to calculate the wavelength-dependent refractive index of an optical material. Sellmeier
coefficients of selected materials are listed in Fig.[2.5]

2.4 Signal propagation in dispersive media

Any time-dependent optical signal has nonzero bandwidth in the frequency domain, i.e. it consists
of different frequency components. Due to the frequency dependence of the refractive index, these
components travel at different speeds, which leads to a deformation of the optical signal during
propagation. This phenomenon is referred to as group delay dispersion, group velocity dispersion,
or just “dispersion”. In optical telecommunications, “dispersion” embraces all effects, that lead to
a spread in group delay time (or group velocity) of different spectral components. In this section,
we will mathematically analyze the effect that a frequency-dependent refractive index has on the
shape of an optical pulse traveling through a dispersive medium.
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Material Sellmeier Equation Wavelength
(Wavelength )\ in pm) Range (pum)
0.6962)2 0.40792 0.8975\2
silica 12 = 021-371
Fusedsilica 1™ =1+ 5 0.06820)7 T 32— (0.1162)7 T X — (9.8962)°
10.6684)2 0.0030)2 1.5413)\2
i 2 1.36-11
St m =1t e 0302 T o (Li3an)? T N = (1104.0) 3
7.4969)2 1.9347)\?
GaA 2-35 1.4-11
ans w=354 55 0aoszE T v - @ranye
0.01878
2 _ 9735 —0. 2 22-1.06
BBO nj = 27809 + o o — 0.01354A 0
0.01224
2 _ 2
n = 23753 + o e — 0.01516)
1.25662 33.8091)2
KDP 21 0.4-1.06
Mo =1t 2 T0.00191)2 T N2 — (33.3752)°
oy L1 5.7568)2
€ X2—-(0.09026)2 A2 — (28.4913)2
2.5112)2 7.1333\2
LiNbO 2 _ 9392 0.4-3.1
NoOs o 0+ 2 (0217 T 32 = (16.502)2
2.2565)2 14.503)2
2 _93%
me = 23T+ 56210y T 32 = (25.915)2

Figure 2.5:
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2.4.1 Frequency-domain representation

For simplicity, let us consider a plane wave with a carrier frequency f. = w./(27) and a time-
dependent optical amplitude propagating along the z-direction in a homogeneous dispersive dielec-
tric material. The optical fields do not depend on x and y, so only the z—dependence is retained
in the following equations.

Dispersive Medium

s
a(0,t) = A(0,¢t) exp (Jwet) a(et) =
[ A - wyed eIt g,
T J—00
Propagation: eJ8(w)z B B )
@(wa)=é~(o>\w‘—wc) » Q(Z,w):A(O}w_wC)eJﬁ(w)z

Figure 2.6: Analysis of pulse propagation in a dispersive medium. The dispersion properties of
the medium are taken into account in frequency domain via the frequency-dependent propagation
constant 3 (w).

The basic principle of the analysis is illustrated in Fig.2.6l For any given position along
the z—axis, the time-dependence of the signal can be expressed by the carrier wave exp (jw.t)
multiplied with a slowly varying complex envelope A(z,t),

a(zt) = A(z,t)exp (jwt) (2.53)
a(z,w)=A(z,w—w) (2.54)

The signal is launched into the dispersive medium at z = 0,

a(0,t) = A(0,t) exp (jwet) (2.55)
a(0,w) =A(0,w—w). (2.56)

The propagation along z is then most easily described in the frequency domain by multiplication
with the frequency-dependent propagator exp (—j 5(w)z) in the Fourier domain,

@ (2w) = (0,w) exp (— j B(w)2) (2.57)

where
w

B(w) = “n (w) (2.58)

c

corresponds to the real part of the z—component of the wavevector. We can now calculate the
Fourier-domain representation of the signal at any z > 0 inside the medium

a(z,w) =a(0,w)exp(—jpw)z)
= A(0,w — we)exp (—j Blw)z) (2.59)
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The corresponding time-domain signal is then obtained by inverse Fourier transformation,
1 [~
a(z,t) = o / A(0,w —w)exp(—jB(w)z)exp (jwt) dw. (2.60)
™ — 00

For some simple cases, we can solve this integral analytically and derive important properties of
signal propagation in dielectric media.

2.4.2 Taylor expansion of the dispersion relation and group velocity

For the simple case of narrow-band optical spectra it is useful to expand S(w) in a Taylor series
about the carrier frequency we,

Bw) ~ B + (w—we) BN + @;—27'&;)2 B + (“)_37'“)3 BB 4+ ..., (2.61)
where

B = difif) (2.62)
Retaining only the first two terms Béo) and ﬁél), the signal in Eq. can be written as

a(z,t)=A (O,t - Bgl)z) exp (j (wt - Bﬁo)z)) . (2.63)

This corresponds to a time-shifted copy of the input signal, modulated by a phase-shifted optical
carrier, Fig.2.7] The phase shift of the carrier wave is given by

AO,1-p.1 2)

Figure 2.7: Signal propagation without consideration of group velocity dispersion. The signal

envelope is delayed by t, = Bél)z; the carrier wave experiences a phase shift of B((;O)z. (Figure
adapted from [30])

— We
= 50)’

z
0
Bg )2 = We—, Vp
Up

B = ZEn(w.), (2.64)

where v, denotes the phase velocity of the symbol. The signal envelope travels at the group
velocity vg4, and experiences a temporal group delay ¢, ,

z 1 c
tg — /Ui — ﬂél)z , 'Ug e ﬁ = ni (265)
g P g

The group refractive index n, depends on the center frequency w, (wavelength A.) and is given by

Ng (wc) =n (wc> + we dz((:”) o (266)
_ dn()
Ng (/\c) =n ()‘c) - )\c d\ A . (267)
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2.4.3 Group velocity dispersion

The second- and higher-order terms of the Taylor expansion in Eq. account for the frequency
dependence of the group velocity. If any ﬁgi) # 0 for ¢ > 2, different spectral components of the
signal experience different group delays. This so-called group velocity dispersion (GVD) leads to a
deformation of the signal envelope. In many cases of practical interest, the second-order dispersion
related to 59) dominates over all other effects. The temporal spread of two wave packets centered
at w. and w, + Aw, is then given by

_ dig (w)

Aty = L X Awe = B Aw, 2 (2.68)

W=wWe
It is therefore useful to define a material dispersion coefficient My, that relates the group delay
spread At, of two spectral components to their frequency separation Af. = Aw./(27)

At 2m dng(w)

=9 My Af,, My = =282, (2.69)
z

c dw
For short pulses, the material dispersion coefficient My (unit: s/(mHz)) is a measure of pulse-
time broadening per unit distance and spectral width. The spectral separation can alternatively
be expressed in terms of wavelength rather than frequency. The group delay spread of two spectral
components centered around A. and A. + A\, is then given by

A
Bty _aran (2.70)
z

Using the wavelength-dependent group refractive index, Eq. (2.67)), the material dispersion coef-
ficient can be expressed as

_ ldng(A) _ 2mc

¢ dx e

M), (2.71)
The material dispersion coefficient M) is usually given in units of ps/(kmnm), where the group
delay difference is given in ps, the propagation length in km, and the spectral separation in nm.
Depending on the sign of M), the dispersion properties of the material are referred to as normal
( ) > 0, M; >0, My < 0) or anomalous ( 2 <o, My <0, My > 0) . The material dispersion
of fused silica is plotted as a function of frequency in Fig.[2.§ along with the refractive index n
and the group refractive index ny. At the so-called zero-dispersion wavelength where the material
dispersion coefficient vanishes (Ag ~ 1.3 um for fused silica), the group refractive index ny reaches
a minimum, and the frequency dependence of the refractive index n exhibits an inflection point.

2.4.4 Example: Dispersive broadening of a Gaussian impulse

As an example, let us consider a Gaussian impulse propagating in positive z—direction. At z = 0,
the signal can be written as

t2
a(0,t) = A, exp <—2) exp (jwet) (2.72)
20;
2 _ 2
@(0,t) = A\/2m02 exp (—W) (2.73)

The spectral width is related to the impulse duration, and the time-bandwidth product assumes
a minimum value at z = 0,

1
0w =2m0f = = 010, = 1. (2.74)
t
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Figure 2.8: Wavelength dependence of the refractive index n, group refractive index n,, and
material dispersion coefficient M, of fused silica. The so-called zero-dispersion wavelength of
Ao &~ 1.3 um is indicated by a dashed vertical line. At a wavelength of 1.55 um, the material
dispersion of fused silica amounts to M) ~ 22— (Figure adapted from [30])

km

As shown on one of the problem sets, group delay dispersion leads to broadening of the signal
envelope in the time domain, which results in an increase of the time-bandwidth product,

B2)2)
o (2) =\ 07 (0) + w, (2.75)
Ow (Z) = 0w (O) ) (276)
p2)z)"
o (2)ow(2) =A\| 1+ <0?<0)). (2.77)

Note that in this example, the sign of 65;2) does not play a role for the amount of dispersive pulse
broadening. An intuitive explanation of impulse broadening is given in Fig.[2.9] For normal group
velocity dispersion (GVD), we have 652) > 0 and M) < 0, i.e. longer wavelengths experience a
smaller group delay, and will arrive first (at smaller times). The leading edge of the impulse will
hence appear red-shifted. For anomalous GVD, in contrast, 552) < 0 and My > 0, i.e. longer
wavelengths experience a bigger group delay, and will arrive last (at bigger times). The leading
edge of the impulse will appear blue-shifted.
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Figure 2.9: Principle of dispersive broadening of an optical impulse during propagation through
media with normal and anomalous group velocity dispersion (GVD). Depending on the sign of the
dispersion coefficient, the leading edge of the impulse will be red- or blue-shifted (R, B). (Figure
adapted from [30])
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Chapter 3

Slab waveguides

The most simple dielectric waveguide is the symmetric step-index slab waveguide, which consists
of a waveguide core of refractive index n; embedded into a cladding material of refractive index
ne, see Fig.[3:1] The fundamental principle of waveguiding can be explained by a simple ray-optics
picture: Light rays impinging on the core-cladding interface from inside with a sufficiently large
angle of incidence (measured with respect to the normal of the interface plane) will undergo total
internal reflection and thereby be confined to the waveguide core. This picture is qualitatively
correct, but turns out inappropriate to explain a number of important effects such as the exis-
tence of waveguide modes or the origin of chromatic waveguide dispersion. In this section, we
will derive an analytical electromagnetic model of the slab waveguide which allows us to study
fundamental effects associated with signal propagation in waveguides. These insights are the basis
for understanding more complex waveguide structures for which analytical descriptions do not
exist.

We will approach the slab waveguide in two different ways, both leading to the same results.
In a first approach, the reflection from the two core-cladding interfaces is first studied separately
and then combined by enforcing lateral self-consistence of the reflected fields. This leads to a
discrete set of guided modes. In a second approach, we formulate a plane-wave ansatz for the
guided modes of an asymmetric slab waveguide.

3.1 Reflection from a plane dielectric boundary

Consider a plane wave impinging on a plane dielectric boundary between two media of refractive
indices n; and ng, see Fig.|3.2l For simplicity, we assume both media to be lossless, i.e., the
associated refractive indices and the components of the wave vectors are real. As an ansatz, we
use a superposition of three plane waves:

e Incident wave in region 1 (z < 0):

kis cos (1)
E(r)=E exp(—jki 1), ki=1 0 | =nmko 0 (3.1)
klz sin (191)

1 .
H (r)= Tﬂokl x E; exp (—jky 1)
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Figure 3.1: Basic principle of a symmetric slab waveguide, consisting of a waveguide core of
refractive index n; embedded into a cladding material of refractive index no. In a simple picture,
we can consider light “rays” that will undergo total internal reflection if they hit the core-cladding
interface from inside with a sufficiently large angle of incidence © (measured with respect to the
normal of the interface plane). These rays will hence be confined to the waveguide core. Using more
detailed analysis that takes into account the wave nature of light, we will show that the boundary
conditions at both core-cladding interfaces can only be fulfilled simultaneously by discrete angles
of ©. (Figure adapted from [30])

e Transmitted wave in region 2 (z > 0):

kog cos (93)
E (r) =Eyexp(—jka-r), ko=[ 0 | =n2ko 0 (3.2)
k2z sin (’192)
1
H =—kyxE —jko
H, (r) e x Eyexp (—jkoT)
o Reflected wave in region 1 (z < 0):
ks — cos (¥3)
E, (r) =Egexp(—jks 1), ks=| 0 | =nsko 0 (3.3)
kgz sin (193)
1
H (r) = —k; x Egexp(—jksr
H (1) = ko x By exp (~ k)

For simplicity, we will omit the spacial arguments (r) in the following. The corresponding dielectric
displacements D and magnetic flux densities B can be obtained from the electric and magnetic

field by using Egs. (2.12) and (2.19) in the respective domains,

Qi,r = EOQ%Ei,r (34)
Dt = COEgEt
Birt = poH; ¢ (3.6

The plane-wave ansatz fulfills Maxwell’s equations in the upper (z < 0) and in the lower half
space (z > 0). To obtain a valid solution in the entire space, we have to additionally satisfy the
following boundary conditions at x = 0:
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e Normal components of D and B are continuous:

(nIE; + niE, —n3E,) -n=0 (3.7)
(k1 xE; +ks xE, —ko xE;) - n=0 (3.8)

e Tangential components of E and H are continuous:
(Ei+E, —E)xn=0 (3.9)

(ki xE;+ks xE, —ko xE;) xn=20 (3.10)

In these relations, n represents the surface normal, i.e., the unit vector that is perpendicular to
the interface plane. The chosen plane wave ansatz is valid if and only if the boundary conditions

according to Egs. (3.7) - (3.10) can be fulfilled.

| ,/
1, Tn |- transmitted
n,> n, /N
/// : \\\
7 \
/W\
// 81 | 93 \\
/ | \
/
incident k| reflected

Figure 3.2: Reflection and transmission of light at a plane dielectric boundary. The propagation
directions of the incident, reflected, and transmitted waves are given by the wave vectors ky, ko,
and kg, respectively. Using a plane-wave ansatz for each of the waves, we can fulfill Maxwell’s
equations in the lower (z < 0) and in the upper half space (z > 0), and we only need to match the
boundary conditions at x = 0. The quantity n represents the surface normal, i.e., the unit vector
that is perpendicular to the interface plane at = = 0.

3.1.1 Snell’s law and law of reflection

The boundary conditions according to Eqgs. (3.7) to (3.10) must be satisfied in all points of the
(y, z)-plane simultaneously. Independent of the nature of the boundary conditions, the spatial
variation of the fields in the (y, z)-plane must hence be the same,

kiy = kay = k3y =0, (3.11)
klz = k?z = k3z- (312)

This leads to the law of reflection,

0y = 93, (3.13)
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Figure 3.3: Graphical representation of Snell’s law and the law of reflection. The boundary
conditions must be satisfied in all points of the (y, z)-plane simultaneously. The spatial variation
of the fields in the (y, z)-plane and hence the tangential component of the wave vectors (here:
k.) must be the same, whereas the length of the wave vectors is dictated by the refractive index,

|k1| = niko, |ko| = nako, and |ks| = nsko. This leads directly to Eqgs. (3.13) and (3.14]).
and to Snell’s law for the transmitted wave,

nysin (91) = ngsin (J2) . (3.14)

For a graphical representation of these laws, see Fig.[3.3]

3.1.2 TE- and TM-polarization

To simplify further the analysis, we consider the boundary conditions separately for two different
polarizations in the following, see Fig.[3.4l For a so-called transverse-electric wave (TE-wave),
the electric field E; is perpendicular to the plane of incidence whereas the magnetic field H; is
parallel to it,

0 Hia:
Ei = Eiy ) Hi = 0 ; (315)
0 Hiz

and we assume that this also applies to the reflected and the transmitted wave,

0 HI‘I

E=|(E,|, H=[o0], (3.16)
0 H,.
0 H,

E=|E,|, H=/[o0 (3.17)
0 Hy,

The validity of these assumptions is confirmed by showing that the boundary conditions at z =0
can be fulfilled. TE-wave are also referred to as H-waves due to the longitudinal H.-component
of the magnetic field or s-polarized wave due to the orthogonal (German: senkrecht) electric field.
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Figure 3.4: (a) Transverse-electric, and (b) transverse magnetic wave propagating in the (z, z)-
plane and impinging on a plane dielectric boundary in the (y, z)-plane. Any arbitrary polarization
state can be treated as a superposition of a TE and a TM wave.

Similarly, a so-called transverse-magnetic wave (TM-wave) has a magnetic field H; which is
perpendicular to the plane of incidence, whereas the electric field E; is parallel to it.

0 FE;

Hi Hiy 9 Ei = 0 ) (318)
0 Eiz

and the associated reflected and the transmitted waves can be written as,

0 E.,

H=|H,]|, E.=| 0 |, (3.19)
0 FE..
0 FEi.

Ht = th ) Et = 0 . (320)
0 Etz

TM-waves are also referred to as E-waves because of their longitudinal E,-components or p-
polarized wave due to the fact that the electric field is parallel to the plane of incidence. Any
arbitrary polarization state can be treated as a superposition of a TE and a TM wave.

3.1.3 Reflection and transmission coefficients

Reflection and transmission coefficients are obtained by enforcing the boundary conditions for the
electromagnetic field components. For TE-polarized fields, the continuity of the normal D-field
component, Eq. (3.7), is inherently fulfilled by the field ansatz, and the continuity of the normal

B-field component, Eq. (3.8), together with Snell’s law, Eq. (3.14)), implies the continuity of the
tangential E-field, Eq. (3.9),

E,, +E;, =E,,. (3.21)
The continuity of the tangential H-field leads to

cos V1 Ey, — cost By, = cos Vol (3.22)
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From these relations, the amplitude reflection and transmission factors for TE-polarized waves are
obtained,

Esy,  kig —kox  mycosidy —ngcosvs

Rrp = 2= = = 3.23

e Eiy  kig+ ko  nicosdy + ngcosty ( )
B, 2k1, 2n1 cos V1

Trg = 2= =1+ R = = 3.24

o Eyy e kigz + ko mqcosty + ngcosts (3.24)

Similarly, the amplitude reflection and transmission factors for TM-polarization can be derived,

H;, n3kiy —n2koy  mocosdy — ng cos o

R = — = = 3.25

™ Hi, n3kiz +nlkay  nocostdy + ngcostsy (3.25)
Ho 212k, 2n1 cos Vg

™ Hyy + T n%k‘m + n%kgx no cos ¥ + nq cos o ( )

The power reflection factors p are related to the amplitude reflection factors by

prE = |RrE|? (3.27)
prm = |Rrul|? (3.28)

The corresponding power transmission factors 7 can be calculated by exploiting the fact the
interaction of the plane wave with the interface must be lossless, i.e., p+ 7 =1,

s =1 — pro (3.29)
i = 1— prag (3.30)

Note that 7rg # |Tre|? (7rm # |Trm|?) since the transmitted wave propagates in a different
medium and under a different angle than the incoming wave, and the relation between the magni-
tude of the transverse electric (magnetic) field and the power flux in z-direction is hence different.
For a plane boundary between air (ny = 1) and GaAs (ng = 3.6), the power reflection factors
are plotted as a function of incidence angle ¥, see Fig.[3.5] For TE-polarization, the power reflection
is minimum at normal incidence (¥ = 0), and it increases monotonically with ¢, whereas for TM-
polarization, the reflection vanishes for the so-called Brewster angle ¢;5 which is given by
tandip = 2. (3.31)
n
Note that for ¥ = ¥;p, the propagation direction of the transmitted (refracted) wave is
perpendicular to that of the reflected wave.

3.1.4 Total internal reflection
According to Snell’s law, ¥o > 01 if n; > ng, and ¥9 = 7/2 if ¥ = Y11, where the limiting angle

U171 for total internal reflection is given by

sintht = % (3.32)
1

To understand what happens for 97 > 917, let us consider the longitudinal components of the
wave vectors,

kgz = klz = ’I’leo sin¥y > 7’7,2]{30, (333)

see Fig.[3.6] Since k3, + k3, = n3k?, the transverse wave vector component ko, must be purely
imaginary,
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Figure 3.5: The power reflection factors as a function of incidence angle ¥ for a plane boundary
between air (n; = 1) and GaAs (ny = 3.6). For TM-polarization, the reflection vanishes for the
so-called Brewster angle ¢15. (Figure adapted from [30])

k3, =n3ks — k3, <0 (3.34)

kgx—ijko\/ﬂlsln v —ni= :l:Jk: (3.35)

This leads to an evanescent “transmitted” field in region (2), which decays exponentially in the
z-direction,

E, =E,exp(—jko-r) =E;exp (—jka.2)exp (—k§2x> . (3.36)

The refracted wave propagates along the surface and decays exponentially beyond the interface,
i.e., no power is transmitted through the interface, which can be verified by calculating the Poynt-
ing vector of the evanescent field. The amplitude reflection factors for the incident wave are
complex numbers with unit magnitude. For TE-polarization, we find

By ke +jkS)

RTE = —_— = 71 = exp (J QDTE) (337)
Ely kiz — .] kégg

50 n?sin® ¥y — n3
= 2arctan [ —2% | = 2arctan , (3.38)
$TE K1z nq cosJq
and similar relations hold for the TM case:
Hs, n2kip +jn2ky) ,
Rpy = 7% = 31—‘];() = exp (j prm) (3.39)
v n3kiy —jniksy,
n2 ko n2 \/n3sin® 9y — nl
= 2arctan | — —2Z | = 2arct — 3.40
PT™M arctan (n% T arctan w2 — (3.40)
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Figure 3.6: If the angle of incidence ¥; exceeds the critical angle 911, then the z-component k,
of the the wavevectors is larger than the total magnitude of the wavevector ks in region 2. This
results in a purely imaginary ko, component and the wave is evanescent in positive x—direction.

Those two equations can be combined in a single relation,

Ry, = exp (jpp) (3.41)

2 i 2 2
nysin® 9 — n3

pp = 2arctan | o, cos O, (3.42)
1 for p=TE

R B (3.43)
ni/ns for p=TM

Total internal reflection leads to a standing wave in the region of the incident field, see Fig.[3.7]

3.2 An intuitive approach to slab waveguide eigenmodes

3.2.1 'Wave picture of the slab waveguide and eigenvalue equation

In the previous section, we have analyzed reflection and transmission of a plane wave at a plane
dielectric interface. A slab waveguide consists of two such interfaces, Fig.[3.1] at each of which
total internal reflection occurs, if the angle of incidence 9 is bigger than the limiting angle ¥;1 for
total internal reflection, Eq. (3-32). One might be tempted to conclude that wave patterns with
arbitrary angles of incidence may propagate in the waveguide, provided that ¥ > 9¥;7. However,
this would be an erroneous assumption; only discrete angles are permitted in reality. To understand
this, we must remember that the rays shown in the Fig.[3:8 are only convenient representations
of plane waves, each of which has a dedicated phase. The phase fronts are perpendicular to the
propagation direction of the plane waves are indicated by dashed lines in Fig.[3.8] In addition,
four points A, B, C, and D are marked in the figure. The ray from point A to point B does not
undergo any reflection, whereas the longer ray from C to D is reflected twice. A and C lie on a
common phase front, and the same applies to B and D. The phase difference accumulated along
AB and CD must hence differ by an integer multiple of 2,

—n1koAB = —n1koCD + 2¢0p +m2m, meN (3.44)

29



y
\ﬂq

] T‘Pp/ 2

Phase

Figure 3.7: Field distribution for the case of total internal reflection at z = 0: We will find a
standing wave in the region of the incident field, and an evanescent decay for = > 0. The phase
shift ¢, depends on both the refractive indices n; and ny and on the angle of incidence ;.

From geometrical considerations we find that AB = (h tand — h/tan)sind and CD = h/ cos 9,
and Eq. (3.44)) can be transformed into

2hniko cos V¥ = 2, +m 2w (3.45)

The equation has a discrete number of solutions for ¢}, each of which represents a so-called wave-
guide mode.

An equivalent relation can be derived from an alternative consideration. In the waveguide core,
the field is represented by a superposition of an upward-propagating and a downward-propagating
plane wave, whereas it is evanescent in the outer regions (waveguide cladding), Fig.p.9|(a). A
well-defined wave pattern within the waveguide core requires the partial waves reflected from the
upper and lower interfaces to be consistent with each other or, in other words, the wave must
reproduce itself after propagating through the waveguide thickness twice and after being reflected
from the top and from the bottom interface, Fig.[3.9)(b). With these intuitive arguments, we
can formulate a transverse self-consistence condition for a symmetric slab waveguide operated in
TE-polarization by requiring the round-trip phase shift to be an integer multiple of 27,

—2k1.h + 2¢TE = —m - 2, m € Ny (346)

This relation is equivalent to Eq. and can be solved by a discrete set of longitudinal prop-
agation constants § = ki, = ks, only. Each solution corresponds to a specific field pattern, a
so-called waveguide mode. To simplifiy further analysis, we define some normalized quantities for
the frequency and for the lateral and longitudinal components of the wave vectors in the core and
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Figure 3.8: Rays and plane waves in slab waveguides: Each ray, represented by a solid blue line,
represents a plane wave with a dedicated phase. The corresponding phase fronts are indicated by

dashed lines. The ray from point A to point B does not undergo any reflection, whereas the longer

ray from C to D is reflected twice. A and C lie on a common phase front, and the same applies

to B and D. The phase difference accumulated along AB and CD must hence differ by an integer

multiple of 27, see Eq. (3.44).
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Figure 3.9:

the waveguide — so-called waveguide modes.
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(a) An alternative approach to the slab waveguide: For a guided wave, the field is
evanescent outside the waveguide core, and can be represented by a superposition of an upward-
propagating and a downward-propagating plane wave within the core. (b) A well-defined wave
pattern requires the partial waves reflected from the upper and lower interfaces to be consistent
with each other. This leads to the formation of distinct field patterns that can propagate along



cladding regions,

h h
L P L - P e
uf2k11772 nikg — B (3.47)
h
2

w= 5]6;;,) B2 — n3k? (3.48)
V= gkom - gkoAN — Va2 +u? (3.49)
AN =/n? —n3 (3.50)
A=t M (3.51)

Bty 2
B= = = —, 0<B<1 3.52
Fr T TR e R (3:52)

In these equations, u denotes the transverse core phase constant (“transversales Phasenmaf’),
w is the transverse cladding attenuation (“transversales Dampfungsmaf”), V is referred to as the
normalized frequency, Ay is the numerical aperture of the waveguide, and A the relative refractive
index difference. The quantity B represents the normalized propagation constant of the waveguide
mode, and n. is the effective refractive index of the mode, which can be thought of as an average
index seen by the guided mode,

ﬂ = ’I’Leko, Ng < Ne < N, noko < B < nikg (353)

Inserting Eqgs. (3.47)) to (3.52) into Eq. (3.46) and using Eq. (3.38) for the phase of the reflection
factor, we can derive the eigenvalue equation for TE modes,

u tan (u - mz) =V V2 - (3.54)

2

Likewise, an equation for TM modes can be derived,

2
u tan (u - mﬁ> = % VV2— 2 (3.55)

2 2

These relations can again be combined into a unified equation for TE and TM modes,

u tan (u — mg) =0, VVZ—u? (3.56)

1 f =TE
A orp (3.57)
ni/ns for p=TM

3.2.2 Graphical solution and discussion

To understand the implications of Eq. , we sketch the left-hand and the right-hand side
as a function of transverse phase constant u, see Fig.[3.10[(a). The vertical axis corresponds to
the transverse cladding attenuation w. The intersection points of the “stretched” branches of
the tangent, u tan (u — m%), with the circle (ellipse), o}, V'V — u?, correspond to guided TE,,-
(TM,,,-)modes of the slab waveguide. The radius (semiminor axis) of the circle (ellipse) is given
by the normalized frequency V. From the intersection points, the eigenvalues u,, and hence
the propagation constants B, are found for a given normalized frequency V. The functional
dependence of the (normalized) propagation constant 8 (B) on the (normalized) frequency w (V)
is also referred to as the dispersion relation of the respective mode, Fig.|3.10|(b). From these
diagrams, a number of important conclusions can be drawn:

e The smaller V', the less modes are guided. The fundamental modes (m = 0) have the largest
possible 3, B (the smallest possible u) as compared to modes with higher mode index m.
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Figure 3.10:  Graphical solution of the eigenvalue equation for TE and TM modes for a slab
waveguide. (a) The two sets of graphs correspond to the left-hand and the right-hand side of
Eq. as a function of transverse phase constant u. The intersection points of the “stretched”
branches of the tangent with the circle (ellipse) correspond to guided TE,,-(TM,,-)modes of the
slab waveguide. The radius (semiminor axis) of the circle (ellipse) is given by the normalized
frequency V. (b) (b) Dispersion relation B (V) of various modes for the case of a low index-
contrast waveguide (weak guidance, A < 1). In this figure, TE,,- and TM,,,-modes are denoted
H,, and E,,, respectively. Since the index difference is small, TE- and TM-modes have virtually
the same propagation constants.

e For V' < 7, there is only one guided TE and one guided TM mode. The waveguide is called
single-moded.

e TE,,-modes have a always a larger 8, B (smaller u) than the corresponding TM,,-modes of
the same order m. This inequality can be also seen from the amplitude reflection coefficients
for the two polarizations: The relation rrg > r7; holds, therefore a TE,,,-mode is always
“more confined” to the high-index core region than the corresponding TM,,-mode. As a
consequence, the propagation constant of a TE,,-mode must be closer to k; than in the
TM,,, case.

e In theory, the symmetric slab waveguide supports always at least one guided TE- and one
guided TM-mode, no matter how low the frequency or how small the waveguide might be,
i.e., there is no lower cut-off frequency. There are, however, practical limits: The lower the
normalized frequency V', the further the evanescent tails of the guided modes extend into the
cladding and the lower the contrast between the effective index n. of the guided mode and
the cladding index ny becomes. The wave is hence only weakly guided at low frequencies
and may leak through the finite thickness of the cladding.

e For weak guidance A <« 1, the polarization parameter is nearly the same for both polar-
izations, oty = org = 1. The propagation constants for TM,,-and TE,,-modes approach
each other asymptotically, and both modes propagate with virtually the same 3. Low-index
contrast waveguides do not exhibit any appreciable polarization dependence, and their in-
vestigation can be restricted to a scalar analysis in many cases of practical interest.

Field patterns of guided modes (m = 1...3) of a dielectric slab waveguide are depicted in
Fig.|3.9|(b).
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3.3 Mode ansatz for the asymmetric slab waveguide

In this section, we will use a more rigorous ansatz to calculate the eigenmodes of a slab waveguide.
We will first introduce general properties of eigenmodes of longitudinally invariant structures, and
then consider the special case of an asymmetric slab waveguide which is infinitely extended in one
transverse direction.

3.3.1 Waveguide modes

A homogeneous waveguide in general is a dielectric structure which is invariant along the propa-
gation direction of the optical power. Without loss of generality, we assume the light to propagate
in positive z-direction. The refractive index profile can then be written as

n(r)=n(z,y). (3.58)

In the following, we assume that we have lossless waveguides, where Im {n} = 0 throughout the
medium.

Cladding, n;

YA
COFe, n1 x Z

Substrate, nj

Figure 3.11: A homogeneous waveguide in general is a dielectric structure which is invariant along
the propagation direction of the optical power. A lossless homogenous waveguide features a set
of electromagnetic wave patterns which do not change their transverse shapes during propagation
along z, so-called eigenmodes.

It can be shown that a lossless homogeneous waveguide possesses a set of eigenmodes, i.e., elec-
tromagnetic wave patterns which do not change their transverse shapes during propagation. The
total field associated with a specific eigenmode is represented by

E(r,t) = E(z,y) exp (j (wt — B2)) (3.59)
E(ra t) = ﬂ((E, y) exp (.] (Wt - ﬁz)) ) (360)
B = ’I”Leko,

where the vectorial quantities £(x,y) and H(x,y) denote the electric and magnetic mode fields
in the transverse plane, 3 corresponds to the propagation constant of the mode, and n. is the
effective refractive index which can be interpreted as an average refractive index which is “seen”
by the wave. Eigenmodes with real propagation constant 5 (real effective refractive index n.) are
referred to as propagating eigenmodes. There are no propagating eigenmodes with a propagation
constant larger than nqkq, where ny is the maximum index in the waveguide cross section

8] < niko for g eR (3.61)
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For so-called guided eigenmodes, the propagation constant (3 is real (or has at least a dominant
real part) and the field profiles are confined to the core, i.e.,

Em(z,y) = 0for (2% +y?) = o0 (3.62)
H,,(z,y) = 0for (z°+y?) — o0 (3.63)

Guided modes transport optical energy in positive z-direction along the waveguide; the mode
fields decay evanescently outside the waveguide core. The guided modes form a discrete set; the
corresponding propagation constants are in the range

naky < |6| < n1ko, (364)

where no denotes the maximum refractive index in the cladding region.

In addition, there are so-called radiation modes, for which the fields extend to infinity. They
transport power away from the waveguide core. Propagating radiation modes form continuous
sets with propagation constants

|B] < nokg for BeER (3.65)

Radiation modes show an oscillatory behavior to at least one side of the waveguide structure. For
general waveguide structures, calculation of radiation modes is difficult. Numerical solvers can
in general not be used, because the transverse fields associated with a radiation mode extend to
infinity and do not fit in any finite computational domain. Analytical solutions are only known
for simple geometries such as slab waveguides. For waveguides with rectangular cross sections,
semi-analytical methods can be used [27].

It can be shown that guided modes and radiation modes form a complete set. That means
that every field distribution E(r), H(r) can be represented as a superposition of these modes

B() = an (e, 0)exp (<1502 + Y [ au(0)€, o) exp (<38, ()2 dp  (360)

m 2

H) = 3t (0.0) 0 (1 8n2) + Y [ 0 (0) 2y 0 9) exp (<38, () 2) dp - (367

In addition, the transverse mode fields of the eigenmodes are orthogonal. We will come back to
these properties when studying coupled-mode theory in Section(6.1.1
3.3.2 Guided modes of slab waveguides

Maxwell’s equations for waveguide modes

Inserting the mode ansatz, Eqgs. (3.59) and (3.60) into Maxwell’s equations, Eqgs. (2.1) - (2.4), we
find

T 18, = - e,
0, =~ june, -
% _ 8;; = —jwuoH,
and
aaﬂyz +jBH, =] weon’E,
aa%y B 68% = jweon?E,
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Figure 3.12: Asymmetric slab waveguide with core refractive index ni, substrate index no, and
cladding index n3: Without loss of generality, we assume the structure to be infinitely extended
in the y-direction, while light propagates in positive z-direction. (Figure adapted from [25])

Slab waveguide modes

In the following, we assume a slab waveguide which is infinitely extended in the y-direction,
Fig.[3:12] In this case, all derivatives with respect to y vanish and we obtain

JBE, = —jwnoH,

% jpe, = —juno, (3.70)
% = —jwpoH,
and
iBH, = jweon’E,
e, = jwen’e, (3.71)
aaﬂxy = jwegn®E,

We may separate these relations into a set of three equations for so-called TE-modes, for which
the transverse mode field comprise nonzero £,, H,, H, modes only, and another set for so-called
TM-modes, for which only the field components ﬂy, E,, &, are different from zero. From these
equations, we may derive wave equations for each of the mode families.

TE modes of the asymmetric slab waveguide
For the TE mode, we can derive the wave equation for the £ -component,

€, (@)

92 + (w?po€on® (z) — B?) &, (x)=0. (3.72)
We now use an ansatz of the form

A cos (ki — ) for —a<z<a
£, (x) = A cos (—kiza — @) exp (ké;) (x+a)) forz< —a , (3.73)
A cos (k1za — @) exp (_kz(alx) (x—a))] forz>a
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which fullfills the wave equation for x # +a if

ki = \/nikg — B2, (3.74)
kS = \/ B2 — n3k2, (3.75)
K = /82 — n2k2. (3.76)

The continuity of £, and H, at x = +a are already included in the ansatz. In addition, we must
fullfill the boundary conditions for the 2 -component. Using Egs. (3.70) and (3.73), we find

—k1z A sin (k1px — ¢) for —a<z<a

H, (z) = o k;lx) A cos (—kiza — @) exp k‘gx) (x + a)) for x < —a (3.77)
W . .
*k:g;) A cos (kiza — @) exp fkézz) (x — a)) forz > a

The continuity of 2, at £ = +a now yields implicit equations for the mode propagation constant
[ and for the field asymmetry parameter ¢,

tan (u + @) = % (3.78)
tan (u — @) = %/ (3.79)
where
u = kiza = ay/nikd — 52, (3.80)
w=ka = ay/B2 — n2k2, (3.81)
w =k a = ay/B2 — n2k2. (3.82)
Egs. and can be rewritten as
u + ¢ = arctan (%) +mym, (3.83)
W
u — = arctan (u) + mam, (3.84)

where m; and ms are integer numbers. These relations may be separated an implicit relation for
the transverse core phase constant v and an equation that allows to calculate ¢ once u is known,

1 1 ' .

u=3 arctan (%) + 3 arctan (i) + m27r7 (3.85)
1 1 !

p = — arctan (E) — Zarctan | =) + m“ﬂr, (3.86)
2 U 2 U 2

where m,, = m; +mg and m, = m; — mg, which is equivalent to m, = 2m; — m,,. Hence, m,, is
even if m,, is even, and m,, is odd if m,, is odd. Moreover, from Eq. , we know that values of
o which differ by an integer multiple of 7 lead to the same physical mode field. Therefore, for a
given even m,,, all corresponding m,, are even and belong to the same mode, and for a given odd
m,, all corresponding m,, are odd and belong to the same mode. We may rewrite Eqgs. and
using a single quantity m instead of m,, and m.,

1 w 1 w’ mm
u=g arctan (E) +3 arctan (u) + <5 (3.87)
= 1arctan (E) - 1aurctaun v + 7 (3.88)
773 w2 u 2 '
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Figure 3.13: (a) Numerical solution of eigenvalue equations for TE-modes according to Eq. .
(b) Dispersion relations for symmetric and asymmetric slab waveguides. There is no cutoff fre-
quency for the fundamental waveguide mode of a symmetric waveguide (y = 0), whereas a cutoff
frequency exists for the fundamental mode of an asymmetric waveguide (Figure adapted from

[25])-

In addition to the normalized frequency V', and the normalized propagation constant B, we intro-
duce here a new parameter v which is associated with the waveguide asymmetry,

= akoy/ni —n -
V = akoy/n? — nd 3.89
2 2
1= (3.90)
2 _ 22 2 _ 2
B— B~ —maks _ ng ng (3.91)

272 212 — 2
niky — nakyg ny —n3

The eigenvalue equation for TE modes of the asymmetric slab waveguide can then be re-stated as

1 B 1 v+ B mm
VVI-B- - A R B G 92
2arctan< 1—B> 2arctan< 1—B> 5 0 (3.92)

f(B)

This relation can be solved numerically for the normalized propagation constant B by computing
the zero of f(B) for given parameters V', 7, and m, see Fig.[3.13|(a). Once B is known, we
can calculate k1, and ¢ as used in Eq. . For a symmetric slab waveguide, we have v = 0,
and Eq. reproduces Eq. (3.54). The dispersion relations for symmetric and asymmetric slab
waveguides are depicted in Fig@(b). For a symmetrical waveguide, there is no cutoff frequency
below which the fundamental waveguide mode (y = 0) cannot propagate any more. In contrast
to that, a lower cutoff frequency exists for the fundamental mode of an asymmetric waveguide.

TM modes of the asymmetric slab waveguide

For the TM modes, the wave equation for the transverse magnetic field component is found to be

n? (z) % <7121(x) %ﬂy (:E)) + (w?poeon® (z) — B?) H,(x)=0 (3.93)

A derivation similar to the one discussed for TE modes can be used here to obtain an eigenvalue
equation for the transverse core phase constant of a guided TM mode,

1 2 1 2,/
u = — arctan n—;g + — arctan n—ég + T (3.94)
2 ns u 2 ns u 2
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This relation can again be written in terms of the normalized frequency V', the normalized prop-
agation constant B, and the waveguide asymmetry parameter v as defined in Egs. (3.89)), (3.90),

and (31)

1 n? B 1 n? v+ B mm
V\/ 1-B-— 5 arctan (n% 1—B> — 5 arctan (TL% ﬁ — 7 =0 (395)

f(B)

Numerical solution of this relation allows to calculate the normalized propagation constant B. For

v =0, Eq. (3.95) reproduces Eq. (3.55).

Examples of mode fields for asymmetric slab waveguides

For a strongly asymmetric slab waveguide (n; = 3.38, ny = 3.17, n3 = 1) and a normalized
frequency of V' = 4, the three lowest-order TE mode fields are sketched in Fig.[3.14 When
decreasing the normalized frequency, leakage into the substrate will occur while the mode field
remains evanescent for x > a.

(a)TEpy mode (b)TEy mode (c)TEy mode

Figure 3.14: Examples of mode fields for a strongly asymmetric slab waveguide (n; = 3.38, ng =
3.17, ng = 1) and a normalized frequency of V' = 4. The field penetrates much deeper into the
high-index substrate (x < —a) than into the air cladding on top of the waveguide core (z > a).
(Figure adapted from [25])

3.3.3 Radiation modes of slab waveguides

We will restrict our discussion to some qualitative remarks on radiation modes of slab waveguides.
A rigorous analytical investigation for asymmetric slab waveguides can be found in [23].

A radiation mode of a slab waveguide can be thought of as a plane wave incident on the
waveguide from the side, see Fig.[3.15] Radiation modes show an oscillatory behavior to at least
one side of the waveguide structure. If, for an asymmetric slab waveguide, the refractive index
ng of the substrate is larger than the refractive index ng of the cover material, so-called substrate
modes can occur, which are evanescent in the cover region, but can propagate extended into the
substrate, see Fig.[3.16] For these modes, the propagation constant 3 obeys the relation

nsko < |B| < noko. (396)

For smaller propagation constants, so-called cover modes exist, which show oscillatory behavior
in both the cover and the substrate,

18] < nako (3.97)

Moreover, even for lossless waveguides, there are eigenmodes with purely imaginary propagation
constant 3. These modes do not propagate in the longitudinal direction, but they decay evanes-
cently. They can vary rapidly in the transverse direction with propagation constants

nskg < kg < 00 (398)
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n3/
Figure 3.15: Radiation modes of slab waveguides: Propagating radiation modes can be thought

of as plane waves impinging on the waveguide structure from outside. These modes show an
oscillatory behavior to at least one side of the waveguide structure.

Such modes are needed to describe the fine structure of the field in the vicinity of a sub-wavelength
waveguide imperfection. For a symmetric slab waveguide, the location of complex propagation
constants [ for different types of guided and radiation modes are sketched in Fig.|3.17]

3.4 Dispersion in dielectric optical waveguides

As in homogeneous media, any time-dependent signal traveling through a waveguide is subject to
dispersion, i.e., to a spread of group delays for different spectral components of the signal. In this
section, we will introduce different dispersion effects that occur within dielectric waveguides. We
will come back to this in the context of optical fibers, where signals propagate over long distances
and where dispersive broadening of the signals is therefore crucial, see section As alluded to
earlier, the notion of “dispersion” in optical telecommunications embraces all effects, which lead
to a group delay spread (or a group velocity spread) of a signal propagating along a waveguide.
Dispersion is also and more precisely referred to as “group delay dispersion” or “group velocity
dispersion (GVD)”.

3.4.1 Group and phase delay

Let us first consider a time-dependent signal propagating in a single waveguide mode. The signal
has nonzero bandwidth in the frequency domain, i.e., it consists of different frequency compo-
nents, which travel at different speeds. The signal propagation can be treated in a similar way as
introduced in section for plane waves in homogeneous media: First, all time-domain signals
are transformed in the frequency domain. For each waveguide mode (mode index m), signal prop-
agation is described by multiplication with the frequency-dependent propagator exp (— j B (w)z).
Taylor expansion of 3,,(w) about the carrier frequency w. allows to identify the phase delay and
the group delay in analogy to section [2.4]

For a certain mode, the phase delay is given by (,, (w.) z, where the modal propagation constant
Bm is related to the mode’s effective refractive index n. by

B (we) = %n (we) (3.99)

where the mode index m has been omitted for the sake of readability. Similarly, the group delay
ty and the group velocity v, can be described by using the mode’s effective refractive index n.
and the corresponding effective group refractive index n.g,

z 1 c
ty=— =B (we == 3.100
g v, Bm (w ) Z, Ug (1) (WC) Neg ( )

The effective group refractive index n., depends on the center frequency w. (wavelength A.) and
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Figure 3.16: Ray pictures of slab waveguide eigenmodes: (a) Guided mode; (b) Radiation mode,
which propagates in the substrate (refractive index ms) only while it is evanescent in the cover
region (refractive index ng < mz); these modes are also referred to as substrate modes; (c¢) Radi-
ation modes which propagate in both the substrate and the cover region, so-called cover modes.
For a given propagation constant 8 two distinct radiation modes with different field patterns can
be found, indicated by the mode indices ¢ =1 and pu = 2. (Figure adapted from [3])

A
) Imp
guided _ propagating guided
modes ' radiation modes modes_l
11 L Ll 1 1l ' 11
| R } ll Lo r'—=
-nyko ko . nyko nykoRep
Id
evanescent
e radiation
modes

Figure 3.17: Location of mode propagation constants § of a symmetric slab waveguide in the
complex plane. There exists a discrete set of guided modes with real propagation constants
nako < |8] < niko. Propagating radiation modes can be found on the real axis for 0 < |8| < nako,
whereas evanescent radiation modes occupy the imaginary axis. (Figure adapted from [22])
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Figure 3.18: Intermodal dispersion in a multimode waveguide: A single optical impulse is launched
into a multimode waveguide at z = 0, thereby exciting a multitude of different waveguide modes.
Each of the modes experiences a distinct group delay, leading to a sequence of optical impulses at
the output of the waveguide. (Figure adapted from [30])

is given by
dne
Neg (wc) = TNe (wc) + we ndiw) o, , (3101)
dne (A
Neg (/\0) = TNe (Ac) - >‘c ne( ) . (3.102)
dA [y,
Higher-order contributions BT(,;/ ) (we), v =2, 3, ... in the Taylor expansion of 3,,(w) lead to chro-

matic dispersion, i.e., to a frequency-dependent spread of the group delay, see section [3.4.3]

3.4.2 Intermodal dispersion and polarization mode dispersion

Note that the group delay as defined in Eq. (3.100) depends on the considered waveguide mode
(mode index m), i.e., signals propagating in different waveguide modes experience different group
delays,

tg.m = B5) (we) L (3.103)

When coupling light to a multimode waveguide, it is impossible to excite exactly one waveguide
mode. As a consequence, a single impulse of light launched into a multimode waveguide will resolve
into a sequence of impulses at the output of the waveguide, see Fig. The corresponding group
delay spread is referred to as intermodal dispersion or modal dispersion. For multimode
waveguides, this is the dominating effect. It is usually much stronger than chromatic dispersion
which will be discussed in the next section.

In so-called single-mode waveguides, two modes with different polarization states can still
propagate. They usually have slightly different propagation constants and group velocities. The
associated group delay spread is referred to as polarization mode dispersion (PMD). PMD
occurs also in optical fibers with nominally circular cross sections, see section [5.6.3t Under real
environmental conditions, these fibers exhibit a small birefringence which varies randomly along
the waveguide and which leads to a group delay spread for different polarizations.

3.4.3 Chromatic dispersion

If, in a single-mode waveguide, only one polarization is excited, the signal still experiences temporal
broadening because different spectral components of the signal experience different group veloci-
ties. The associated spread of the wavelength-dependent group delays is referred to as chromatic
dispersion and can be expanded into a power series about the center wavelength,

At

?9 = C\ A\ + Dy ANZ, (3.104)
2me
Cr=—58%, (3.105)
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where BEQ) = 67(73) (we), and where the mode index m has been omitted for the sake of clarity.
The chromatic dispersion coefficient C) is usually given in units of ps/(kmnm), where the group
delay difference is given in ps, the propagation length in km, and the spectral separation in nm.
The second-order expansion D) coefficient describes the wavelength-dependence of the chromatic
dispersion and is therefore also referred to as the dispersion slope.

For signal propagation in a homogeneous medium, group delay dispersion is caused by the
medium’s material dispersion, i.e. the frequency dependence of the refractive index, see section
In a waveguide, however, both the material dispersion of the waveguide medium and the
frequency-dependence of the waveguiding mechanism itself contributes to chromatic dispersion.
In general, these two effects are intimately interlinked. For weakly guided modes, however, the
two contributions can be explicitely separated,

del
A< hetor
v Vv
tg . d/B - 1 dﬂ dko ~ %o 'n,Qg nlg _ngg d(VB)
f_d—_faz N —2 4 ] (3.106)
w  cdkp Nig — Nag £ c |4
XNy — N9 material waveguide
The chromatic dispersion coefficient can then be written as
Cr=M,+ W, (3107)

where the material dispersion coefficient M, and the waveguide dispersion coefficient W, are given
by

1dng(\)
M, =-—"9"", 3.108
AT dA (3.108)
2
Nig — N2g d (VB)
_ 1
Wi Ve (3.109)
———
dispersion
factor

Example (see Problem Set):

Compare two different slab waveguides with no = ng = 1.45 and ny; = ng + dn:
Waveguide 1: én = 0.005; 2a = 4 pm
Waveguide 2: dn = 0.005 x 10; 2a = 4 pm /+/10

For both waveguides, a certain real frequency f corresponds to the same normalized frequency:

2
V = akoAn = akoy/n? —n3 ~ Lf av/2ns6n
c N——

identical for both waveguides

Since v = 0 (symmetric waveguide), the eigenvalue equation for TE modes, Eq. (3.92), yields the
same normalized propagation constant B for both waveguides, and since n?/n2 ~ 1, we obtain
practically the same propagation constant for the TM modes, Eq. . However, the dispersion
properties of the waveguides differ quite significantly, see Fig.[3.19] Both material dispersion and
waveguide dispersion contribute to the overall chromatic dispersion, see Egs. (3.107), (3.108),
and (3.109). In our example, silica glass is used as a base material for both waveguides, and the
material dispersion coefficient M) is negative for A < A\g =~ 1.3 um, where \g denotes the zero
material dispersion wavelength (normal group velocity dispersion), and positive for A > Ag. The
waveguide dispersion W) is negative for all wavelengths in the considered range. For waveguide
2, its magnitude is approximately a factor of 10 larger than for waveguide 1. This shifts the
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Figure 3.19: Interplay of material and waveguide dispersion. We consider two waveguides WG1
and WG2, which differ in both the refractive index contrast and the waveguide width in a way that
a given real frequency w translates into the same normalized frequency V = a+/n{ —n3. Both
waveguides feature the same material dispersion M. However, for the strongly guiding waveguide
(higher index contrast, smaller waveguide width), the waveguide dispersion is much stronger than
for the weakly guiding case. At a wavelength of 1.55 pym, this results in a strongly negative
chromatic dispersion coefficient C'\, which can be used to compensate the positive chromatic
dispersion of a weakly guiding waveguide. This is the principle of dispersion compensation in
fiber-optic communication links, see section [5.6.2

zero-dispersion wavelength of the waveguide from approximately 1.3 pm to a value beyond 2 pm.
For a fixed wavelength of A =~ 1.55 pym, we find

Oy (155 pm) ~ 4 1 =P for waveguide 1
A =5 for waveguide 2

By combining appropriate lengths of these two different waveguides, a net chromatic dispersion of
zero can be achieved,

Atg = A\ (C,\1L1 + C)\QLQ) =0 for CyiL1 + CyxoLs = 0.

This is the principle of dispersion compensation, which we will discuss again in the context of
dispersion compensating fibers, see section|.6.2

3.5 Metal-dielectric waveguide structures and surface plas-
mons

In the previous sections, we have considered dieletric slab waveguides. Here, we will investigate
optical waveguiding in structures that involve both dielectrics and metals. We will find that
strongly localized modes can exist at a single interface between a metal and a dielectric provided
that the optical frequency is smaller than the plasma frequency of the metal. Propagation of
these modes involves density oscillations of the electron plasma just below the surface of the
metal. The associated quasiparticles are called surface plasmon polaritons (SPP), or, in short,
surface plasmons. Both the wavelength of SPP and the penetration depth to either side of the
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TABLE 4.1 Refractive indices and extinction coefficients of selected metals and
semiconductors

Material 2 (um) n K & — j& = (n— jk)? F
Au 0.633 0.17 3.0 —8.97—j1.02
0.653 0.166 3.15 —9.89—j1.05
1.55 0.550 11.5 —132—j12.6
Ag 0.633 0.065 3.9 —15.2—j0.507
0.653 0.140 4.15 —17.2—j1.16
1.55 0.514 10.8 —116—j11.1
Cu 0.633 0.14 3.15 —9.91—j0.88
0.653 0.214 3.67 —13.4—j1.57
1.55 0.606 8.26 —67.9-j10.0
Al 0.633 1.2 7 —47.56—j16.8
0.653 1.49 7.82 —58.9-j23.3
1.55 1.44 16.0 —254—j46.1
Cr 0.633 3.19 2.26 +5.07—j14.4
1.590 4.13 5.03 —8.24—j41.5
Ge 0.633 4.5 1.7 +17.4—j15.3
0.653 5.294 0.638 +27.6—j6.76
1.55 4.275 0.00567 +18.3—j0.049
GaAs 0.633 3.856 0.196 +14.8—j1.51
0.653 3.826 0.179 +14.6—j1.37
1.55 3.3737 — +114
Si 0.633 3.882 0.019 +15.07—j0.148
0.653 3.847 0.016 +15.0—j0.123
1.532 34784 — +12.1

Figure 3.20: Refractive indices and extinction coefficients of selected metals and semiconductors
(Adapted from [3]).

interface can be much smaller than the vacuum wavelength of the corresponding photon. This can
potentially enable ultracompact optical devices with subwavelength dimensions as well as highly
sensitive optical detection schemes for single molecules adsorbed to the surface of a metal-dielectric
interface. It is for these promises that plasmonics is currently a lively field of ongoing research.

3.5.1 Refractive indices and extinction coefficients of metals

For ideal metals, where damping of the plasma oscillations is neglected, the electric susceptibility
is given by Eq. (2.49). The corresponding relative dielectric constant is then given by

2
& =1—-L (3.110)

where the plasma frequency of the metal can be estimated from Eq. . For real metals and
semiconductors, however, the relative dielectric constant results from various contributions of both
bound and free charges, and damping of plasma oscillations cannot be neglected. This leads to
complex dielectric constant €, and a complex refractive index n of the form

€, = € — j€r (3.111)

Er

n=n-—jn; (3.112)

The negative imaginary part n; of the complex refractive index is often referred to as the extinction
coefficient and denoted by k. Refractive indices and extinction coefficients of selected metals and
semiconductors are listed in Fig. [5].

3.5.2 Metal-clad slab waveguides

Let us first consider a metal-clad slab waveguide where a high-index waveguide core is sandwiched
between a metal top layer and low-index lower cladding, see Fig. For calculating the modes,
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n; = 0.0085 - 4j

Silver n,,

ny = 15884

Glass s

n, =1.5133
A=1.55um

Figure 3.21: Metal-clad slab waveguide, consisting of a polymer waveguide core which is sand-
wiched between a silver top layer and low-index glass cladding. (Adapted from [3]).

we can use the same procedure as in Section [3.3.2} but with complex refractive indices n,, n,, and
n. This results in a complex propagation constant of the form

B=08-ibi (3.113)
the imaginary part of which is related to the modal power attenuation constant o by
o =20;. (3.114)

For a slab waveguide consisting of a glass substrate (n, = 1.5133), a polymer core (n; = 1.5884),
and a silver cladding (ng = 0.0065 — 4j), the normalized propagation constant B according to
Eq. and the modal loss coefficient «/kq are plotted as a function of normalized frequency V'
in Fig.[3.22] The following facts may be observed from the plots:

e The B—V —curves have essentially the same shape as for dielectric slab waveguide, except for
the TMy-mode, for which the propagation constant is essentially independent of frequency.

e The loss of TM-modes is much larger than the loss of the corresponding TE-modes. For a
given frequency, the attenuation increases with mode index.

e For all modes except TMj, the loss coefficient « reaches a peak slightly above the cutoff
frequency and then decreases monotonically as frequency increases, thereby changing by
more than two orders of magnitude. In contrast to that, the attenuation of the TMy-mode
is much higher, but is essentially independent from frequency.

This behavior can be understood from looking at the mode profiles, see Fig.[3.23}

e For all modes except TMy, the fields extend across the entire waveguide core and evanescently
leak into the substrate. The interaction of the modes with the dielectric core and substrate
is hence roughly comparable to the case of an asymmetric dielectric slab waveguide, and this
results in similar dispersion curves.

e For the TE-modes, the electric field is entirely parallel to the (nearly) perfectly conducting
metal surface and must hence (nearly) vanish. This leads to a very weak interaction of the
mode with the metal top layer, and attenuation is hence weak.

e The TM-modes, in contrast, have a dielectric displacement component D, (electric field
component F,) which is perpendicular to the metal surface, and which is hence continued
by an electric current inside the metal. As a consequence, the TM mode fields penetrate
deeper into the metal and hence experience considerable ohmic loss.

e Generally, for higher-order modes, a larger fraction of the mode field propagates in the metal
top layer, and losses are therefore higher.
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Figure 3.22: Modes of metal-clad slab waveguide: (a) The B — V —curves have essentially the
same shape as for dielectric slab waveguide, except for the TMgy-mode, for which the propaga-
tion constant is essentially independent of frequency. (b) The attenuation of the TMy-mode is

much higher than that of all other waveguide modes, but essentially independent from frequency.
(Adapted from [5]).

e For the special case of the TMy-mode, the mode field is entirely confined to a thin layer near
the metal-dielectric interface. The fraction of the mode field propagating in the dielectric
substrate can be neglected, and the effective index seen by the mode is essentially frequency

independent.
1 . . ; i
: ;= 15884 11, = 15133
TE0 > n.=0065—j4 hh/1=2.638 TMo
05 f
Re(e,) — 1 Re(e,) —
Im (¢,) seeeseeees o : A Ime) e

ng=15133" n,=15884"
n.=0.065-j4 h/h=2.638

Iy (x)

07 s - “05 0 05 1 -2 -15 -1 -05 0 05 1
x/h x/h
1 15133 15884 ' T i 15888 m=15133 ! '
ng=1.5 =15 =15 = 1.5133
- n.=0065-j4 h/r=2638 TE, = n.=0065—j4 Ii/r= ™,
T AR 0 7
-1 N I 1 L -1 1 1 1 1 1
-2 -15 -1 ~05 0 05 1 -2 -15 -1 -05 0 05 1
x/h x/h
! - ! 15884 1 = 15133
ne= 1. ng=1.
=1 s
RN o creee TE2 = n.=0065—j4 h/x=2638 TM2
< PRy e TP % 0 \V4
n.=0.065-j4" h/h=2638 =
-1 L L -1 L L L L
-2 -15 -1 05 1 -2 15 -1 ~05 0 05 1
x/h x/h

Figure 3.23: Mode fields of metal-clad slab waveguide: For all modes except TMy, the fields
extend across the entire waveguide core and evanescently leak into the substrate. For the special
case of the TMy-mode, however, the mode field is entirely confined to a thin layer near the metal-
dielectric interface. The mode field does not interact with the dielectric substrate, and the effective
index seen by the mode is essentially independent of frequency. (Adapted from [5]).

3.5.3 Surface plasmon polaritons
Derivation from Maxwell’s Equations

Let us now focus on the TM, surface wave propagating along the boundary between a dielectric
material with relative dielectric constant €,.;, and a metal with relative dielectric constant €,.,,.
This so-called surface plasmon polariton (SPP) wave consists of a transverse magnetic field of the
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form

0
H(r,t) = | #, () | exp G (ot — 52). (3.115)
0
where
Hoe %w®  for x>0
1, (@) =4 " o (3.116)

() .
HyeFaz® for <0

The quantities kg,?z and kfi;) denote the negative and positive imaginary parts of the transverse
wave vector components in the metal and the dielectric region. The corresponding electric mode
field components are then given by

BH, ()

. for x>0
E, (@) = q fal, () tor 2<0’ (3.117)
WEQE,.q
) Y (x
jik’;;%{(' ) for x>0
@)= 50 @ : (3.118)
I vae, for <0

The continuity of the D, -component is inherently fulfilled by the ansatzﬂ the continuity of the
E,—component leads to
Fie kg,
= ——dz (3.119)

rm &rd

€

For simplicity, let us assume real dielectric constants €,; = €4 and €,,, = €., for the moment.
For a physically meaningful bound surface wave, we must require that the z-components of the
wave vectors are purely imaginary ,

kO = /B2 — ek, (3.120)

K = /B2 — €.qk2, (3.121)

Inserting Eqgs. (3.120) and (3.121)) into Eq. (3.119), we obtain an analytic expression for the disper-
sion relation of the surface plasmon polariton,

B = ko | (3.122)

€rm T €rd

The corresponding lateral decay constants are then given by

i —€

Kine = Koy | —— (3.123)
(i) —e2y

kY =koy | —d— 3.124
dw 0 €rm + €rd ( )

INote that in many cases of classical electrodynamics, the surface-normal component of the dielectric displace-
ment D is considered to be discontinuous at a metal-dielectric interface. In this consideration, the discontinuity of
the normal D-field component is associated with the surface charge density o. In contrast to that, our considera-
tion assumes a nonzero penetration depth of the fields into the metal. This penetration depth is typically a small
fraction of the wavelength. The fields then obey the normal continuity rules for dielectric materials, but decay in
the volume of the metal due to a nonzero volume charge density p.

48



d<<i

Dielectric /\ /\ /\ /\

AT T - |

Metal

Figure 3.24: Electric field and charge distribution of a surface plasmon polariton (SPP).

A bound propagating solution exists if 3, k%)m, and k(g;) are real. Assuming a positive €,4, this is
only possible if

€Erm < —€rd (3.125)

Surface plasmon polariton formation requires at least one of the materials to have a sufficiently
negative dielectric constant. This condition can be fulfilled by metals provided that the operation
frequency is sufficiently far below the plasma frequency, see Eq. (3.110)),

Wp
V 1T+ €ra

The corresponding mode fields are sketched in Fig.[3:24] The E,—component changes its sign at
x = 0 - this hints to regions of nonzero charge density, see sketch of the electric field lines and
charge density distributions in Fig.|3.24]

w < (3.126)

Dispersion relation

Using the free-electron gas dispersion model for the metal, Eq. (3.110), we can sketch the disper-
sion relation of surface plasmon polaritons, see Fig.|3.25|(a). Note that dispersion relations in
plasmonics are usually depicted by plotting the frequency w (or the photon energy) as a function
of propagation constant 8 or its magnitude |3| in case of complex numbers. In such diagrams,
bound modes lie below the so-called light line which is given by

w = cBy/erq (3.127)

and which corresponds to the dispersion relation of a plane wave propagating in the homoge-
neous dielectric medium of dielectric constant €,4. The dispersion relation of the plasmon can be
subdivided in three regions:

e For w < wp/+/1+ € q we find bound surface plasmons, for which the dispersion relation lies
below the light line and which hence decays evanescently into the dielectric region.

e For w,/\/1+¢€.4 < w < w,, the propagation constant /3 is purely imaginary and decays
evanescently along the direction of propagation

e For w > wp, the wave can propagate both within the metal and within the dielectric. The
associated modes do not decay in the transverse direction and are hence not bound to the
surface.

When using real material data rather than the ideal electron gas model, the dispersion relation
changes quantitatively without loosing its overall shape, see Fig.[3.25((b).
Loss and penetration depth

In any cases of practical interest, |€.,| > €,4. Both the SPP propagation constant /3 and the lateral
decay constants kﬁﬁ)m and k((i;) are therefore much bigger than the associated vacuum wavenumber

ko, see Egs. (3.120), (3.121), and (3.122). As a consequence, the effective wavelength 27/8 and
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Figure 3.25: Dispersion relations of surface plasmon polaritons (SPP) for idealized and real
material data; (a) Dispersion relation for an Ag/SiO; interface based on free-electron gas dispersion
model. (b) Dispersion relation for an Ag/SiOs interface based on real material data for the complex

refractive index of Ag. (Figures adapted from [5])
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Anti-symmetric Symmetric
mode mode

Figure 3.26: Electric field distribution of coupled surface plasmons supported by a thin metal
film that is sandwiched between two identical dielectric layers. For the symmetric mode (L-), most
of the light propagates within the metal film, leading to high losses. The antisymmetric mode
has usually lower propagation loss, since a larger fraction of the mode field propagates outside the
metal film. (Figures adapted from [g])

the lateral penetration depths §,, = 1/ k#ﬁv and 04 = 1 /kl(jz) are much smaller than the vacuum
wavelength A. By exploiting the strong confinement of light, plasmonics structures can potentially
enable ultra-compact photonic devices of sub-wavelength scales. Plasmonic devices are therefore
a busy area of ongoing research.

One of the main drawbacks, however, is the fact that plasmonic waveguides still suffer from

high losses. Assuming that the negative imaginary Eﬁ)@ part of the complex dielectric constant of

metal €,,,, = €m — jeﬁ)n is much smaller than the real part, 652721 < €.m We can calculate the real

and the imaginary part of the plasmon’s complex propagation constant 8 = 3 — j3; [8],

B = ko | —rmerd (3.128)
€rm + €rd

€rmeErd 3/2 [ (@)
i =ko [ ———— A 3.129
ﬁ 0 <6rm + €Td> 267"771 ( )

Propagation distances L, = (2&)71 are typically several tens of microns. Losses can be consider-
ably decreased by using asymmetric coupled surface plasmons propagating along the surfaces of a
thin metal film, see Fig.
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Chapter 4

Planar integrated waveguides

In the previous chapter, we have considered two-dimensional slab waveguides that are infinitely
extended in the y- and the z-direction. Light was confined in the x-direction only, and it was
possible to calculate the mode fields by a mathematically exact semi-analytical methodﬂ We
will now extend our analysis to the case of three-dimensional optical waveguides, where light is
confined both in the vertical and in the horizontal direction. For these structures, only approximate
semi-analytical solutions exist, and they can only be applied to a limited range of rather simple
waveguide geometries. For many structures of practical interest, numerical modeling methods
are therefore needed, the basics of which will be introduced as well. Nevertheless, approximated
solutions remain very important for simplified design and modeling.

4.1 Basic structures of planar waveguides

Basic structures of integrated optical waveguides are depicted in Fig.[.1} For a certain application,
the waveguide structure has to be chosen based on the available material system, the propagation
loss in the waveguide, the desired integration density or the connections to other waveguide devices
or external fibers. The index difference An = n; — ny between the core and the high-index part
of the cladding can range from a few percent for glass waveguides to values larger than unity, e.g.,
for the case of silicon-on-insulator structures. In the case of high index contrast, roughness of the
core-cladding boundary leads to radiation and must be minimized by technological means.

Channel waveguides, Fig. (a), consist of a rectangular core embedded in a uniform cladding
material. These waveguides are characterized by the refractive index of the core and the
cladding, n; and ns, respectively. For a simplified mathematical analysis, we can exploit
the symmetry of the waveguide in both the x and y directions. As for the symmetric slab
waveguide, there is no cutoff of the fundamental modes if we assume that the cladding
extends to infinity.

Strip waveguides, Fig. (b), consist of a rectangular core structure of refractive index ny that
is deposited directly on the substrate of a lower refractive index ns and covered by a medium
of refractive index ngz. For large index differences n; — ng, strip waveguides are prone to
roughness-induced scattering loss. The cross section of the waveguide core does not have to
be rectangular. Depending on the fabrication method, the sidewalls can, e.g., be inclined
leading to a trapezoidal shape of the waveguide core. As for asymmetric slab waveguides, if
ng # ng, the fundamental modes run into cut-off for low frequencies.

Rib waveguides, Fig. (c), comprise a film layer deposited on a substrate where the thickness
of the film is increased along the waveguide. Interpreting the vertical layer stack as a slab

IThe method is semianalytical in the sense that the mode fields could be formulated analytically whereas
numerical techniques were needed to solve the resulting implicit equation for the propagation constant (.
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Figure 4.1: Basic structures of integrated optical waveguides; (a) Channel waveguide; (b) Strip
waveguide; (c¢) Rib waveguide; (d) Ridge waveguide; (e) Diffused waveguide; (f) Multilayer wave-
guide.

waveguide, the increased thickness leads to an increase of the effective index in the region of
the waveguide core and light is confined to this region. For large index differences n; — ns
between the core and the top cladding, this structure is prone to roughness-induced scattering
loss.

Ridge waveguides, Fig. (d), consist of a continuous core layer of refractive index n; and a
laterally structured top layer of lower refractive index ns which is in turn covered by the top
cladding (refractive index n4). As in rib waveguides, light is guided by a locally increased
effective refractive index of slab waveguide that corresponds to the vertical layer stack. Since
the rough sidewalls of the structured top layer are farther from the waveguide core, ridge
waveguides are less prone to scattering loss.

Diffused waveguides, Fig. (e), have a refractive index profile that gradually decreases from
a high value ny in the center of the waveguide core to the lower refractive index ny of the
substrate material. The index profile can be created by a diffusion process, where a dopant
diffuses into a substrate material, thereby increasing the local refractive index. The index
profile is approximated by analytical functions such as Gaussian or Error-Function (erf)
distributions, where the width w and the height h correspond to the diffusion lengths in the
horizontal and the vertical directions. The index difference n; — ny is usually rather low,
and if air is used as a top cladding (ng = 1) light guidance in the lateral direction is rather
weak.

Multilayer waveguides, Fig. (f), can consist of complicated layer stacks (refractive indices
n1, ng...) that are deposited on a substrate (refractive index ng) and that confine light in
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the vertical direction. Lateral guidance of light is achieved by partially etching the layer
stack. Such structures are often used for active devices, where a double heterostructure
pn-junction is integrated into the waveguide core. Depending on the etch depth, multilayer
structures can be prone to scattering loss if rough etched sidewalls exist in a region of high
field intensity.

4.2 Guided modes of a rectangular waveguide: The Marcatili
method

In this section, we will consider a semi-analytical method that allows to approximately calculate
guided modes of rectangular slab waveguides provided that the mode field is essentially confined
to the waveguide core. This method has originally been proposed by Marcatili [21] and is therefore
often referred to as the “Marcatili method”.

Consider a rectangular channel waveguide as depicted in Fig.[4.2] In the following, we consider
the case where the relative index difference between the core and the cladding region is small, i.e.,
ny/ny = 1, and we assume that the electromagnetic field in the shaded areas can be neglected.
This is true if the field is mostly confined to the core, i.e., if the waveguide is operated far from
cut-off of the respective mode. We further assume that the guided fields can be separated in two
modes, for each of which one of the transverse magnetic field components vanishes,

H, =0; ﬂy and £, dominate = &, — mode
H,=0;H, and §y dominate = &, —mode

We will analyze the £;-modes in more detail. For the £,-modes, the analysis can be derived in a
similar way.

Basic equations for £,-modes

Using these assumptions, we can further simplify Maxwell’s equations for waveguide modes,

Egs. (3.68) and (3.69). For £,-modes, H,, = 0 and we obtain

o0&

Ee ne 4.1
By +iBE, =0 (4.1)
g, . :
s 1P = —jwmol, (4.2)
o8, 0E,
and
0
oL 41 B, = e, (14)
oH, .
— (%c :Jweon2§y (4.5)
OH
a;xy = jween’E, (4.6)

Using additionally the divergence equation for the magnetic field,
V-H=0 (4.7)

o, oM, .
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Figure 4.2: Simplified model of a rectangular channel waveguide: The relative index difference
between the core and the cladding region is assumed to be small, i.e., ny/ns = 1, and the electro-
magnetic field in the shaded areas is neglected. This approximation is valid if the field is mostly
confined to the core, i.e., if the waveguide is operated far from cut-off of the respective mode
(Figure adapted from [21]).

22—

we can express all nonzero electromagnetic field components of the £ -mode by X, :

_who, 10 ( 1 A,

€ = B H, iB 0z (jweon2 oz (4.9)
1 0%,

&y = Ceon®i a0y (4.10)
1 OH,

£.= jwegn? Oz (4.11)

1 0H
H, = s 8; Y (4.12)

Within the homogeneous core and cladding regions, the refractive index does not vary, n(x,y) = ny
or n(x,y) = ng, and can hence be taken out of the differential operator in Eq. . Moreover, the
vectorial wave equation for the magnetic field, Eq. , can be separated into scalar equation
for each vector component. Using the mode ansatz for the magnetic field, Eq. , we obtain
the wave equation for the } -component,

PH, O*H
o T o (kgn® = B*) H, = 0 (4.13)

Mode field ansatz for &£,-modes

The further analysis proceeds in analogy to the slab waveguide: We will use an ansatz for the H -
component (,-component) of the £;-mode (€,-mode) that fulfills the respective wave equation
within the homogeneous core and cladding regions. In this ansatz, we use the propagation constant
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[ as a free parameter. From there, we will derive all other nonzero components of the mode fields.
Enforcing the boundary conditions at the core-cladding interface, we obtain an implicit equation
for 8 which can then be solved numerically.

The ansatz for the transverse magnetic field components represent guided electromagentic fields
that are confined to the waveguide core and that decay exponentially in the cladding region while
being continuous a the core-cladding interface. Since the waveguide is symmetric with respect to
both the z- and the y-axis, it is sufficient to consider the first quadrant, i.e., the region z > 0, y > 0,
see Fig.@ For the £;,-modes, the ansatz for the H,-field reads

A cos (k1gx — D) cos (k1yy — Dy) in region 1
H, (x,y) = A cos (kiza — @) exp (fk'gx) (x — a)) cos (kiyy — P,) in region 2 (4.14)
A cos (ki1zx — D) cos (ki1yd — Dy) exp (—ké;) (y — d)) in region 3

where the transverse wavenumbers and decay constants ki, k1, and ké;), kéﬁl) are related to the
propagation constant S by

—ki, — k3, — B> +niks =0, (4.15)
kS — k2, — 5%+ n3kE =0, (4.16)
—k3, + k)% — 8%+ n3k2 = 0. (4.17)

Due to waveguide symmetry, the mode fields must be even or odd with respect to x and y, and
the phases ¢, and @, are hence given by

Py =(q-1)

Using the mode field ansatz of Eq. (4.14) together with Eqs. (4.9) — (4.12), we can estimate the
order of magnitude of the various field components. Eliminating 5 from Egs. (4.15) — (4.17), we
find

p=12... (4.18)

3oy

g=1,2... (4.19)

x

K, + kS5 = (0} —n3) kg (4.21)

K, + k) ? = (n} —n3) k3 (4.20)

According to our assumptions, the index difference between the core and the cladding region is

small, i.e., n? — n3 < n?, and we obtain the following relations

ki < niko, k’1y < niko, B~ nikg, (4.22)

i.e. the mode field is predominantly propagating along the z-direction with relatively small trans-
verse wavevector components. This is in full analogy to a weakly guiding slab waveguide, where
plane waves must hit the core-cladding interface under a sufficiently large angle ¢ = 90° to maintain
total internal reflection.

Inserting Eq. into Eq. , we find that the magnitudes of the dominant components of
the electromagnetic field are related by

Who

B

Similarly, we can use Eq. (4.9) to show that the £ -component is weaker than the £ -component,
by a factor of the order of 6<,

EAES 2| (4.23)

2
klm
21.2
niky

£, ~ ‘ €21~ 0 (0%) |E, | (4.24)
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where
~ klz ~ kly

~

~ 1. 4.25
n1k0 nlko < ( )

The £, -component can therefore be safely neglected when matching the boundary conditions at
the core-cladding interfaces. In contrast to that, we find from Eqgs. and that the
longitudinal magnetic and electric field components are weaker than the dominant transverse
components by only a factor of the order of ¢,

~ | F1aP ~
e~ [ 14, ~ 00) e (1.26)
k
.| ~ % |H,| ~ 0 (5) |7, (4.27)

The continuity of the £ - and the 7 ,-components at the core-cladding interface must hence be
considered.

Boundary conditions and dispersion equation for £,-modes
The £,-component in regions 1, 2 and 3 is obtained by inserting Eq. (4.14]) in Eq. (4.11]),

_% sin (k1o@ — @5) cos (kiyy — Py) in region 1

A NG
éz (1‘7 y) = -

Jweg

cos (k1za — @) exp <—k‘§$) (x — a)) cos (k1yy — P,) in region 2 .

[Ny

—% sin (k1@ — @5) cos (k1,d — P,) exp (—k§;) (y — d)) in region 3
2
(4.28)
The £,-component must be continuous both across the vertical (z = a) and the horizontal (y = d)

core-cladding interface. The continuity condition at x = a leads to the first dispersion equation
for £,-modes

T n2 k(i)
kiza=(p—1)= t L M2 4.29
1za = (p )2+arc an(n%klx ( )

The continuity of £, at y = d cannot be fulfilled by the ansatz, since n; # nys. However, for low
index contrasts, n; — ny < 1, the associated error is negligible.
The H ,-component can be obtained from Eq. (4.12]),
—k1y cos (kiyz — Dy) sin (k1,y — Dy) in region 1
M, (z,y) = % —kiy cos (kiza — @) exp (—ké;) (x — a)) sin (k1yy — P,) in region 2 .
j , ,
—kély) cos (kizx — @5) cos (k1yd — Py) exp (—k§2 (y — d)) in region 3
(4.30)

For the H ,-component, the continuity at = a is inherently fulfilled, and the continuity condition
at y = d yields the second dispersion equation for £,-modes:

kiyd=(g—1) g + arctan (é%j) (4.31)
From Eqgs. , , and , we find

k) ® = kg (nf = nd) — i, (432)

Ky ” = k5 (nf —n) — K, (4.33)

Inserting these relations into Eqs. (4.29) and (4.31)), we obtain implicit equations for ki, and k.
After numerical solution, the propagation constant 5 of the mode is obtained by
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Analysis of £,-modes

A similar analysis can be performed for the&,-modes. Using again Eqs. (3.68) and (3.69) together
with the assumption that H, = 0 we can express all nonzero electromagnetic field components by

H

JLy -

2
£ =z fh%y (4.35)
g, = —jweﬁ agiy‘”’" (4.37)
H, = j%aaﬂ; (4.38)

Within the homogeneous core and cladding regions, the wave equation for the 7 _-component is
given by

PH,  OPH, 2.2 ;2

a2 T oy T (ken’ — ) H, =0 (4.39)
By using a field ansatz for H, in analogy to Eq. (4.14), and by matching again the boundary
conditions of the £, - and the H,-component, we obtain the dispersion equation for 5@5’) ‘D_modes:

T )
kiza=(p-—1) 5 + arctan ];TI (4.40)
2 7.(4)
m ny kSy
k1,d = (¢ — 1) = 4 arctan 4.41
wi=(1-1)% (m) (141)

Classification of mode fields

The mode fields obtained from the Marcatili method can be classified as %P~ and Eép”)—modes.
In this nomenclature, the subscript z or y denotes the dominant transverse component of the
electric field (£, or £,). The integer index p = 1,2... (¢ = 1,2...) denotes the number of

extrema that this field component has along the z-direction (y-direction), see Fig. and

grgpﬂ) )

-modes are often also referred to as (quasi-)TE modes; Egsp "Y_modes are often denoted as

(quasi-)TM modes.

Limitations of the Marcatili Method

As stated above, the Marcatili Method is only a valid approximation if all of the following criteria
are fulfilled:

e Rectangular cross section
e Index difference between the core an the cladding region is small, n? — n3 < n}

e The waveguide is operated far from the cut-off frequency of the respective mode and the
field is confined to the waveguide core. This minimizes errors that arise from the fact that
the field in the corner regions has been ignored.

In all other cases, dedicated analytical or numerical methods have to be used to calculate the
waveguide modes.
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Figure 4.3: &Ep D _mode fields of rectangular channel waveguides. The colors correspond to the
optical intensity. Arrows indicate the relative orientation of the dominant transverse electric field

component (£,). The integer index p =1,2...

(¢ =1,2...) denotes the number of extrema that

this field component has along the z-direction (y-direction).
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Slab waveguide interpretation of the Marcatili Method

The Marcatili method can be interpreted as a replacement of the three-dimensional (3D) channel
waveguide by two “equivalent” two-dimensional (2D) slab structures, which are defined by the
waveguide’s layer sequence in the horizontal and the vertical direction, see Fig. An Eg(f D _mode
then translates into a TM mode for the equivalent vertical slab waveguide (slab thickness 2a) and
into a TE mode for the equivalent horizontal slab waveguide (slab thickness 2d). The dispersion
equations and correspond to the eigenvalue equations for the two slab waveguides.

Equivalent considerations can be applied to the Ef,p’q)—modes, Fig. In the Marcatili method, a
unified ansatz is used to simultaneously fulfill the boundary conditions of both slab waveguides.
We will later see that this leads to an underestimation of the effective refractive index.

Kumar’s method

Marcatili’s method can be extended by taking into account the mode fields in the corner regions
of the waveguide. Such a method was proposed by Kumar et al. [19], see Ref. [24] 25] for more
details.

4.3 The effective-index method

The basic idea of the Marcatili method is to replace a 3D waveguide by two mutually independent
2D slab waveguides whose parameters come directly from the 3D structure. In the course of the
solution, a unified mode ansatz is used to fulfill the boundary conditions of both waveguides.
In a similar way, the effective-index method approximates a 3D waveguide by two related slab
structures. However, only the parameters of the first slab waveguide are taken directly from the
3D structure, whereas the second slab waveguide is defined based on the mode solution for the
first one, i.e., the two structures are solved individually. We will later see that the effective index
method slightly overestimates the effective refractive index of a 3D waveguide structure, whereas
the Marcatili method tends to underestimate it.

Basic idea

To understand the basic principle of the effective-index method let us consider the waveguide
depicted in Fig.[.7] To apply the effective-index method, two basic assumptions must be fulfilled:

e The medium is only weakly inhomogeneous, i.e., the refractive index contrast is small (n; —

ng < ni, n1 —ng < np), and the scalar wave equations (2.24) and (2.25) (Helmholtz
equations) can be used.

e The horizontal waveguide dimensions are significantly larger than the vertical dimensions
(w>> hy, w>> hy), i.e., we are considering waveguide structures that are “flat and wide”.

Under these assumptions we obtain a good approximation of the 3D waveguide structure if we
split the mode calculation in two steps: In a first step, we calculate the y-dependence of the fields
by modeling the different regions (slab 1, slab 2, slab 3) as individual, infinitely extended extended
slab waveguides. For each position x, this yields a y-dependent mode field F' (z,y) and an effective
index ne, (z) of the local slab waveguide stack. In the example depicted in Fig.[4.7](a), we obtain
refractive indices nega, Nes1, and nesz for the core region (slab 2) and for the adjacent regions (slab
1, slab 3), respectively. In a second step, the resulting effective indices are used to define a 2D
slab waveguide with vertically oriented core and cladding layers, see Fig.[4.7|(b), which can again
be solved with the standard semianalytical methods introduced in Section[3.:3] This method can
be generalized to a wide range of low index-contrast planar 3D waveguide geometries, including
structures which are nonuniform in the direction of propagation. By calculating the effective index
for the vertical layer stack at each position (z, z), the 3D index profile n (z,y, z) is the reduced to
an equivalent 2D profile n.; (x, z), and the resulting 2D structure can be analyzed with analytical
or simplified numerical methods.
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Figure 4.5: Slab-waveguide interpretation of an e ‘D_mode. The mode field can be considered
as a TM mode for the equivalent vertical slab waveguide (slab thickness 2a) and as a TE mode
for the equivalent horizontal slab waveguide (slab thickness 2d). The dispersion equations
and correspond to the eigenvalue equations for the two slab waveguides.
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Figure 4.6: Slab-waveguide interpretation of an &Sp ‘D_mode. The mode field can be considered
as a TE mode for the equivalent vertical slab waveguide (slab thickness 2a) and as a TM mode
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and correspond to the eigenvalue equations for the two slab waveguides.
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Figure 4.7: (a) Typical waveguide structure that can be approximated by using the effective-index
method. The refractive index contrast is assumed to be small (n; — ngs < ni1, ng —ng < ny),
such that the scalar wave equation for weakly inhomogeneous media can be used. In addition,
the lateral waveguide dimensions are assumed much larger than the vertical dimensions (w > hq,
w >> hg). First, the mode fields F (z1,y) and F (z2,y) are calculated together with the effective
indices nes1, Nes2, and nego within and outside the core region, respectively. (b) The result is then
used to define a 2D slab waveguide with vertically oriented core and cladding layers and refractive
indices Meg1, Mes2, and neg3. Both slab waveguides can be solved with standard semianalytical
methods.

Mathematical derivation

The intuitive approach described in the previous section can be formulated mathematically by
using a separation ansatz for the wave equation. The derivation starts from the wave equation for
weakly inhomogeneous media, Eqs. and (2.25). By inserting the mode ansatz, Eqs. (3.59)
and (3.60), we obtain the wave equation for the mode field,

W (z,y) O (x,y)
Ox? * Oy +

(kgn® (z,y) — B) ¥ (x,y) =0, (4.42)

where ¥ (x,y) can be any component of the mode fields £(z, y) and H(z, y). The basic assumption
of the effective index method is that the rapidly varying z-dependence of the mode fields can be
factored out, i.e.,

Y(x,y)=F(zy) G(z), (4.43)

Making use of the fact that the horizontal waveguide dimensions are significantly larger than the
vertical dimensions, we can assume that F' (z,y) is only a slowly varying function of z, whereas
G (z) dominates the z-dependence of ¥ (z,y) and of its derivatives,

O*W (x,y) PG (x)
Oz ox?

Inserting Eq. (4.43)) in Eq. (4.42)) and using Eq. (4.44), we obtain

~ F(z,y) (4.44)
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0%G (z O%F (z,
Fio) o2+ 6 @) TEEY 4 (13 (0.0) - ) F () G @) = 0 (1.45)
1 9%G(z) 5 1 0*F (z,vy) 5 o
_ = 4.4
purely xz-dependent y—dependence dominates, only weakly x-dependent

Eq. (4.46) must be fulfilled for all values of y. This is only possible if the right part on the left-
hand side does not depend on y which allows us to separate the two expressions. We introduce
the effective index n.s(z) of the horizontal slab waveguide structure as an z-dependent separation
variable,

1 9F(a,
o g R () = K, (@) (@47
1 aQG($) 2 2, 2
Ga) o — 5% = —kinz, (z) (4.48)

Eq. (4.46) has hence been separated in two relations for the expression F' (z,y) and G (),

PLCA) ¢ (k3 (2,0) — Ko, 0) F () =0 (49
TED | gz, @)~ #) G @) =0 (430

For a given z, Eq. corresponds to the wave equation for a horizontal slab waveguide. By solv-
ing the associated eigenvalue problem at this specific z-position, we obtain the local y-dependence
F (z,y) of the electromagnetic field together with the effective refractive index n.s(x) of the local
slab structure. By using n.s(z) in Eq. (£.50), the wave equation for the equivalent vertical slab
waveguide is obtained and can be solved for the eigenfunction G (x) and the propagation constant
8. The full spatial dependence of the field is then given by Eq. (4.43]).

Examples: E,.-modes of rib and channel waveguides

As an example, let us consider the E,-modes of low index-contrast rib waveguide, see Fig.[4.8|
For the E,-modes, the dominant electric field component is oriented horizontally, i.e., parallel to
the dielectric interfaces at the top and at the bottom of the waveguide. This corresponds to a
TE-polarized mode field within the horizontal slab waveguides. In a first step, we calculate the
effective indices of the slab sectionsﬂ
{1.4809 for — 1.5um < 2 < 1.5 um
Nes () =

1.4633 elsewhere
These values define the related vertical slab waveguide, for which a dominant F,-component now
corresponds to a TM-mode. This leads to an effective refractive index of n., = 1.4737 , which
differs quite significantly from the numerical result of n, = 1.4846 that was obtained from a
finite-element mode solver [12].

For a channel waveguide, it is impossible to define a vertical layer stack outside the core region,
see Fig.[:9] In this case, the refractive index of the cladding material may be directly used for the
region outside the waveguide core to define the vertically oriented equivalent slab waveguide. The
obtained effective refractive index still differs from the result of a numerical calculation, but the

deviation is smaller. If exact numbers are needed, findings obtained from approximate effective
index solutions should always be cross-checked with numerical tools.

2A particularly useful mode solver for slab waveguides can be found at http://www.computational-
photonics.eu/oms.html.
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Figure 4.8: Calculation of E,-modes of a rib waveguide using the effective-index method. For
the E,-modes, the dominant electric field component is oriented horizontally, i.e., parallel to the
dielectric interfaces at the top and at the bottom of the waveguide. This corresponds to a TE-
polarized mode field within the horizontal slab waveguides, leading to effective indices of 1.4809
(1.4633) within (outside) the core region. These values define the related vertical slab waveguide,
for which a dominant F,-component now corresponds to a TM-mode of effective refractive index
ne = 1.4737, which differs quite significantly from the numerical result of n, = 1.4846.

Contour Map of Transverse Index Profile at Z=0 E, Mode Profile (n 4=(3.263238,-2.683e-009))

Y (um)

Figure 4.9: Calculation of E,-modes of a channel waveguide using the effective-index method. For
the region outside the waveguide core, the refractive index of the cladding material is directly used
to define the vertically oriented equivalent slab waveguide. The dominant electric field component
is oriented horizontally, i.e., parallel to the dielectric interfaces at the top and at the bottom of the
waveguide, which corresponds to a TE-polarized mode field within the horizontal slab waveguides,
leading to effective indices of 3.2788 within the core region. These values define the related vertical
slab waveguide, for which a dominant F,-component now corresponds to a TM-mode of effective
refractive index n. = 3.2649, which still differs a bit from the numerically calculated value of
e = 3.2632.
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Figure 4.10: Comparison of effective refractive indices obtained from different approximation
methods for the case of a rectangular channel waveguide with w = 2h . The effective parameters
are defined by V = k:oh\/nl — n2 and B = = Z_kaZQ Both the effective index method and the
Marcatili method give accurate results for modes far above cutoff, where the mode fields are well
confined to the waveguide core. Near cutoff, the effective index method tends to overestimate the

propagation constant of the mode field, whereas the Marcatili underestimates it. (Figure adapted
from [5]).

Accuracy of approximation methods

A comparison of effective refractive indices obtained from different approximation methods is
depicted in Fig. (4.10) for the case of a rectangular channel waveguide with w = 2h [5]. In this

analysis, the effective parameters are defined by V' = kohy/n? — n3 and B = % It is found
that both the effective index method and the Marcatili method give accurate results for modes far
above cutoff, where the mode fields are well confined to the waveguide core. Near cutoff, however,
these methods have to be used with care. As stated earlier, the effective index method tends to
overestimate the propagation constant of the mode field, whereas the Marcatili underestimates it.

A deeper discussion of the error sources can be found in Ref. [5].

4.4 Numerical methods for mode calculation

4.4.1 General principles

For high-index contrast waveguides or complicated waveguide cross sections, analytical approxima-
tions cannot be used. In these cases, numerical methods are needed to calculate the guided mode
fields. In this section we will introduce the basic principle of finite-difference and finite-element
mode solvers. For simplicity, we assume weakly inhomogeneous media for which the scalar Helm-
holtz equation can be used. Advanced mode solvers, that account for the vectorial nature of the
mode fields, rely on the same basic principles.

The general procedure of numerical mode solvers is depicted in Fig.[f.1T] Irrespective of the
exact implementation, numerical solution procedures rely on the discretization of the refractive
index profile within a finite computational domain (“meshing”). The computational domain has to
be chosen sufficiently large to make sure that the electromagnetic fields are close to zero near the
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Figure 4.11: General procedure of numerical mode solvers: The refractive index profile is dis-
cretized within a finite computational domain (“meshing”) and the electromagnetic field quantities
are represented by a discrete set of field values at the respective mesh points. Maxwell’s equations
or the corresponding wave equations can be then approximated by a set of linear equations for
the unknown field quantities which can be solved numerically.

domain boundary. Within this domain, the electromagnetic field quantities are represented by a
discrete set of field values at the respective mesh points. Maxwell’s equations or the corresponding
wave equations can be then approximated by a set of linear equations for the unknown field
quantities which can be solved numerically. Numerous effects can lead to errors in numerical
schemes, the most common of which will be shortly discussed in the following.

Numerical mode solvers are contained in most commercial software packages for electromag-
netic field calculations. For photonic applications, widely used software packages are, e.g., the
following;:

e BEAMProp by Rsoft Inc., Ossining, NY, http://www.rsoftdesign.com
e Microwave Studio by CST, Darmstadt, http://www.cst.de

¢ FIMMwave by Photon Design, Oxford, UK, http://www.photond.com/
e HFSS by Ansoft, Pittsburgh http://www.ansoft.com

4.4.2 Finite difference method

In finite difference methods, the refractive index profile is sampled at discrete grid points. Depend-
ing on the meshing algorithm, the grid points will or will not be equidistant in space, Fig.[d.12]
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Figure 4.12: In finite difference methods, both the refractive index profile and the electromagnetic
fields are sampled at discrete mesh points. (a) Uniform grid: Az and Ay do not vary throughout
the computational domain. (b) Nonuniform grid: Az and Ay are locally adapted to the structure.

The field equations are then discretized by replacing the derivatives of a function f (x) by their
finite difference representation. For a uniform discretization along x with step size Az = xp11 —p,
the first and the second derivative of a function f(z) is given by

f/ (Sﬁp) ~ f(xp+1)£xf(xp—1) (451)

7 (z,) ~ f(@p1) + f(AJ;pz_1> —2f(xp) (4.52)

In this way the set of partial differential equations is replaced by a linear set of equations which
can be solved using standard algebraic methods. This shall now be demonstrated by formulating
a finite-difference version of the scalar wave equation.

Scalar mode solver

To derive the fundamental relations of a scalar mode solver, we insert the mode ansatz, Eqgs. (3.59)

and (3.60) into the wave equations for weakly inhomogeneous media, Eqs. (2.24) and (2.25). This
yields

02w 9w
5(?31) N 7(:5,3;) n
T dy

(kgn® (z,y) — B%) ¥ (z,y) =0 (4.53)

where ¥ (z,y) can again be any component of the mode fields £(x,y) and H(z,y).
To discretize the computational domain, we assume an equidistant mesh with grid points (zp, yq)T,
where
Ax = 2p1 — Tp, (4.54)
Ay = Yg+1 — Yqgs (4.55)

see Fig. Both the refractive index profile n (z, y) and the field quantity ¥ (z, y) are represented
by the respective values in the discrete grid points,

(Tps Yq) » (4.56)

Tlp q n
W (2p,9) (4.57)

Ypog=

where p=1... P and ¢ = 1...Q. The second-order derivatives in Eq. (4.53) are approximated
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Figure 4.13: Finite-difference representation of a rib waveguide. In this example, a uniform grid
is used, i.e., the grid points (xp,yq)T, p=1...Pand g=1...Q, are equidistant.

by finite differences,

0% (x,y) i1 T 10— 2y (4.58)
2 P Ax? ’ '
W (x,y) _ Vpgr1 T ¥pq-1— 2%, (4.59)
y? Ay? ' '

T=Tp, Y=Yq
Eq. (4.53) can hence be rewritten as

v +v . =20 v +v =20
=p+1l,g " =p—14g =p,q |, =—p,g+1 " =p,q—1 =p,q 2,2 _ 2
Ax? + Ay? + kOnp,qu,q =p gp,q' (4'60)

Re-writing Eq. (4.60) for each node (z,,v,)", we obtain a matrix eigenvalue equation for the field
values ¥, . and the propagation constant j,

AT = 50, (4.61)

where ¥ = (2171 .. 'ZP,Q) is a (PQ@, 1)-vector that contains all field values in the mesh points, and
A is a sparse (PQ, PQ)-matrix that represents the coupling between these field values. Equation
(4.61) can be solved numerically to obtain the propagation constant § and the field distribution
v

=p.q
This procedure can also be extended to vectorial mode solvers. The vector ¥ then contains
different field components, the coupling of which is given by a still sparse, but larger matrix A.

Boundary conditions and termination of computational domain

In any numerical solver, the electromagnetic field is only represented within the finite computa-
tional domain. Problems arise when the finite difference equations are applied at the boundary
points p=1,p=P, ¢g=1 or ¢ = Q, since field values outside the computational domain (p = 0,
p=P+1,¢g=0o0r g=Q+1) are required. Two main methods are commonly used to overcome
these problems:

Perfectly matched layers (PML) A straightforward solution is to set the field values outside
the computational domain to zero. This can be interpreted as putting a perfect metal-
lic conductor (perfect mirror) at the domain boundary. To prevent perturbations from
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back-reflection of radiation into the computational domain, a layer of absorbing material
is artificially added inside the domain boundaries. The wave impedance of this layer must
be matched to the impedance of the computational domain to prevent reflection from the
surface of the absorbing material. However, adjusting the parameters of the absorber to min-
imize reflection is commonly cumbersome, and artificial reflections persist in many cases. In
addition, PML often require to significantly extend the computational domain, thereby in-
creasing computation time. For these reasons, PML are rarely used in conjunction with
finite difference methods.

Transparent boundary conditions (TBC) Field values outside the computational domain can
also be guessed in a way that back-reflections from the domain boundaries are minimized.
To this end, it is usually assumed that the field behaves like an outgoing plane wave whose
characteristics (amplitude, phase) are estimated by a heuristic algorithm. By using the
plane wave assumption, the field outside the domain boundary can be related to the interior
points, thus completing the set of equations. TBC are generally very effective in allowing
radiation to freely escape the computational domain, without the need to extend the domain.
Nevertheless, there are problems for which they do not perform well. In these cases, PML
can still be an attractive alternative.

In any case, numerical convergence studies must be performed to ensure that reflection of light by
the boundary of the computational domain does not impair the numerical results.

4.4.3 Finite-element method

In the finite-element method (FEM), the dielectric structure is split into basic geometrical elements
(e.g., triangles or tetrahedra), so-called finite elements, within which the refractive index is assumed
to be constant, see Fig. The Finite Element Method (FEM) does not solve the wave equation
directly, but a related variational problem that is constructed from the operator of the differential
equation. For the two-dimensional scalar wave equation, Eq. , the corresponding functional

is given by [16]
2 2
(W) + (a‘p(xy)) + (k202 (x,y) — B2) ¥ (z,y) | do dy

d :% //Q 0 dy
- [ e (462)

where (2 denotes the computational domain. Solving the wave equation is equivalent to minimizing
this integral. To this end, the integral is first expressed as a sum over the finite elements, which are
labeled by a subscript p = 1... P. In each of the elements, the electromagnetic field is expanded
into a set of ¢ = 1...Q basis functions ¥, (z,y),

P, (2,9) =Y cpg Py (1), (4.63)

where ¢, denote the expansion coefficients. The functional can then be written as a quadratic
matrix equation,

1
I= gcT (A — (kgn* - B*)B)c (4.64)
where ¢ denotes a (PQ,1)-vector that contains all expansion coefficients ¢,q, and where A and B
are (PQ, PQ)-matrices that are obtained by integrating the basis functions ¥, (z,y) and their

derivatives over the various finite elements. A necessary condition for the functional I to assume
a minimal value is stationarity, i.e., the local gradient must vanish,
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Figure 4.14: In finite-element methods, the computational domain is split into basic geometrical
elements, so-called finite elements, within which the refractive index is assumed to be constant. (a)
Finite-element mesh with rectangular geometry elements. (b) Finite-element mesh with triangular
geometry elements.

Vil =(A- (kin®*—B*)B)c=0. (4.65)

This corresponds to an eigenvalue matrix equation that can be solved numerically to obtain the
expansion coefficients ¢, and the mode propagation constant 3,

B 'Ac = (kin® - %) c. (4.66)

Using Eq. (4.63)), the electromagnetic field can now be reconstructed from the expansion coefficients

Cpq-

4.4.4 Sources of errors in numerical mode solvers

There are several sources of errors in numerical solvers which should be carefully checked:

Model errors are due to basic assumptions in the underlying algorithm that may or may not
apply to the modeled structure. As an example, methods that have been developed for
low-index contrast fibers cannot necessarily be applied to high-index contrast integrated
waveguides, and scalar methods should only be used in weakly guiding waveguides. It is
therefore essential to check the intrinsic limitations of a numerical solver before applying it
to a specific problem.

Discretization errors are caused by the approximation of the refractive index profile by discrete
grid points and by the finite-difference approximations of the derivatives or the finite-element
approximation of an integral expression. For any simulation, a convergence study should be
performed, in which the discretization steps are reduced continuously until the results do
not change any more.

Finite computational domain: Errors can also occur if the computational domain is too small
for the problem, i.e., if the electromagnetic field interacts with the domain boundaries. This
can be avoided by a convergence study in which the computational domain is continuously
extended until the results do not change any more.

Note that there is a fundamental difference between the errors due to an approximate method like
the effective index method and a numerical method like the finite difference method: With exact
numerical methods we can start from Maxwell’s equations and the error can always be reduced
by, e.g., refining the discretization parameters or by extending the computational domain. This
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is of course at the expense of larger calculation times. In approximate methods like the effective-
index methods, the equations are solved rigorously, but the equations are only approximations of
Maxwell’s equations. It is generally important to critically check the results of numerical methods
by, e.g., looking carefully at the field plots and doing plausibility tests.

4.5 Waveguide technologies and fabrication methods

Integrated optical waveguides can be realized in various material systems, each of which has specific
strengths and weaknesses. The advantages, drawbacks and some important material systems are
discussed in the following sections.

4.5.1 Glass waveguides

Glass waveguides are fabricated on large-area glass substrates or oxidized silicon wafers. The
refractive index contrasts are rather small (usually An < 0.1). Therefore confinement of the
optical wave is weak, which leads to large waveguide cross sections and requires large bending radii
to minimize radiation losses. This results in large devices, but also allows for low-loss coupling to
standard single-mode fibers, which also have low index contrasts and hence large mode diameters.
Glass waveguides are currently the preferred technology for high-quality passive devices such as
optical filters and arrayed waveguide gratings. Currently two different fabrication methods are
commonly used: Diffusive ion exchange or deposition and structuring of the core material. These
methods shall be shortly discussed in the following.

Ion exchange waveguides

In special types of glasses, the refractive index can be increased by exchanging the ions that are
usually embedded into the glass matrix. Substituting, e.g., Na by Ag within the speciality glass
IAG4E| leads to an increase of the refractive index by up to 0.1. Diffusion can be purely thermal
or assisted by electric fields that drive the ions into the bulk substrate material. This results in
waveguiding channels just below the surface or deeply within the substrate, see Fig.[d.15] In such
structures, the refractive index varies continuously across the waveguide core.

Deposition and etching, Silicon optical bench (SOB)

The second technique is based on the deposition of glass layers by means of chemical vapour
deposition (CVD) or flame hydrolysis (FHD) on a substrate. In many cases, a silicon wafer is used
as substrate material, and the integration platform is then often referred to as silicon optical bench
(SOB) [13]. Waveguide cores are then structured by lithography and dry etching processes and
overclad by additional low-index glass layers. Amorphous silica is often used as base material for
the core and the cladding layers, and the refractive index of the core layer is increased by doping
with phosphorous (P) or germanium (Ge). Depending on the doping material, the relative index
difference A = (n} — n3) /2n? ranges from a fraction of a percent to a few percent. The relatively
large waveguide cross-sections allow easy coupling with standard single-mode fibers, having a core
diameter of approximately 9pm. A schematic cross section and a fabricated SOB waveguide are

depicted in Fig.[.16]

4.5.2 Lithium niobate waveguides

Lithium niobate (LiNbOs) is an anisotropic crystal which features strong electro-optical and
acousto-optical effects and is commonly used to realize efficient optical switches and broadband
electro-optic modulators. Waveguides on LiNbOg3 substrates are fabricated using diffusion pro-
cesses, where two methods are commonly used, see Fig.[4.17]

3TAG4 consists of SiOg, AlaO3, BoO3, NagO, TiOz, Nat, and F—
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Figure 4.15: Glass waveguide fabrication based on ion exchange; (a) The refractive index of certain
glasses can be increased by exchanging the ions that are usually embedded into the glass matrix.
Substituting Na* by Ag™ within the speciality glass ITAG4 leads to an increase of the refractive
index by up to 0.1. (b) Ag™ ions can be moved into the glass matrix by thermal indiffusion
from the surface. The lateral shape of the waveguide is defined by a mask. The refractive index
varies continuously across the waveguide core. (¢) To produce buried waveguides, field-assisted
ion exchange is used in a second step. In this process, the ions near drift under the influence of
an externally applied electric field. Diffusion continues during drift such that the cross section of
the waveguide increases as it penetrates the glass substrate (d) Cross-section of an ion-exchange
waveguide (i) near the surface and (ii) in the volume of the substrate (Figure source: Leoni fiber
optics)

(a) doped SiO,, An~001 (b)

Waveguide

SiO,, n=1.44 ‘ e ——-q‘.{ .

20 pm

Figure 4.16: Glass waveguides fabricated by deposition and etching of doped glass layers. (a)
Schematic cross section of a glass waveguide of doped SiOs in a silicon base wafer (“Silicon optical
bench, SOB”); The relative index difference A = (nf — n3) /2n? ~ An/n ranges typically between
0.3% and 1.5 %. (b) Cross sectional view of a fabricated SOB waveguide. (Picture source ?)
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Ti-indiffused waveguides

For indiffusion of Ti, the metal is deposited on the surface of the wafer and patterned by lithography
and etching. A subsequent thermal treatment at around 1000 — 1050°C for several hours leads to
indiffusion of Ti into the LiNbOj substrate, thereby causing a refractive index increase of around
An = 0.002...0.01. Typical waveguide widths are 10 um. Due to the anisotropy of the Lithium
niobate crystal, the behavior of resulting integrated optical components shows a large polarization
dependence.

Proton-exchanged waveguides

For proton exchange, an Al-mask is patterned on the surface of the substrate, and the wafer is
then immersed in boiling benzoic acid (200 —240°C) for 2-4 hours. This this leads to a substitution
of Li*- by H"-ions. For the so-called extra-ordinary polarization, the resulting Li;_,H,NbO3 has
a refractive index which is higher than that of the surrounding LiNbO3s byAn =~ 0.02...0.05,
whereas for the ordinary polarization, the index is decreased, An =~ —0.04.

(@) Ti-indiffused (Tl) waveguides " ~0002--0.01()

» Ti-strip w10 um
Thermal diffusion o
1000C~1050C; 6~8 hr L:LINbO3

LiNbO3

Wet Oxygen ambient

IIIIIIIIIIIIIII>

LiNbO3

(b) Proton-exchanged (PE) waveguides

Boiling benzoic acid (FEES)

+ N An =~ 0.02 ... 0.05 (extraordinary pol)
e T Amask An ~ -0.04 (ordinary pol)
Li, ;H, NbO3
LiNbO3 e LiNbO3

Figure 4.17:  Fabrication of lithium niobate waveguides: (a) Indiffusion of titanium (Ti) under
high temperatures; (b) “Proton-exchange”, substituting Li* by H"-ions. This leads to a refractive
index increase for one polarization (extraordinary) and to a decrease for the other polarization
(ordinary). (Picture Source ?)

4.5.3 Polymer waveguides

Polymers represent a broad set of materials. Polycarbonate (also used for compact disks) and
PMMA are the preferred materials for purely passive applications. Other types of polymers show
functional properties such as, e.g., a large electro-optical or non-linear coefficient, but this is mostly
at the expense of a reduced long term stability.

Optical losses are relatively low around 800 nm, but increase considerably at infrared telecom-
munication wavelengths between 1300nm and 1500 nm. This is due to overtones of C-H-bond
oscillations. Losses can be decreased if hydrogen H is substituted by deuterium (heavy hydrogen),
chlorine or fluorine since the larger atom mass of these materials shifts oscillations further into the
IR, see Fig. (a). The fundamental oscillation of the C-H-bond lies near 3390 nm, for deuterium
it is 4484 nm and for Fluorine, the oscillation can be shifted to 8000 nm. Typical polymers such
as poly(methyl-methacrylate) (PMMA) or polycarbonate (PC) exhibit losses of typically several
dB per meter, which increase significantly for longer wavelengths, see Fig.[i.18] (b) and (c).
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Figure 4.18: Losses of polymer materials; (a) Attenuation contributions from different overtones
(overtone order N) of C-H-, C-D-, C-F-, and C-Cl-bonds (D = deuterium, Dampfung = attenua-
tion; Wellenldnge = wavelength; Molekiil = molecule). The larger the atom mass of the involved
elements, the further the oscillations are shifted into the infrared. (b) Attenuation profile of poly-
carbonate (PC); (¢) Attenuation profile of poly(methyl-methacrylate) (PMMA). The attenuation
is dominated by overtone oscillations of C-H-bonds. It can still be below 0.1dB/m at around
570nm and is significantly lower than that of PC. (Figures adapted from [32])

Polymer waveguides can be fabricated on various substrates such as silicon wafers or special
polymer sheets. Two mainstream processes to fabricate polymer waveguides rely on ridge sub-
sequent overcladding or trench formation and overcladding, see Fig.[.19] Polymer waveguides
are, e.g., used for optical board-level interconnects. To facilitate fabrication and coupling, typical
waveguide widths and heights amount to several tens of microns, which leads to highly multimode
structures, see Fig.[£:20]

4.5.4 Silicon nitride waveguides

Silicon nitride waveguides usually use silicon dioxide (SiOz, n = 1.44 at 1550 nm) as a cladding
material in combination with waveguide cores that consist of alternating layers of SizNy (n = 2.1 at
1550 nm) and SiO,, see Fig. By varying the thickness of the layers, this technology allows for
medium and high index-contrast waveguides that exhibit low propagation loss and are suitable for
wavelengths from below 500 nm to 2 pm. Silicon nitride waveguides are, e.g., commercially offered
by LioniXEI under the label “TriPleX”. Applications are not only limited to telecommunications
but also comprise biochemical sensing and co-integration of optical waveguides and microfluidic
systems.

4.5.5 Waveguides based on III-V compound semiconductors

III-V compound semiconductors feature direct bandgaps and are therefore ideally suited for active
optical devices. The bandgap can be adjusted by the composition of the material. This allows to
integrate laser diodes and photodiodes together with passive components. Two material systems
are commonly used.

InGaAsP /InP waveguides

This material system allows for monolithic integration of optical devices in the 1.3 ym and 1.5 ym
wavelength range, where fused-silica optical fibers have the lowest loss. High index-contrast wave-
guides are formed by epitaxial layer growth on an InP substrates and by etching. Waveguide
structures are typically small (1-2 um lateral dimensions), which can lead to problems when cou-
pling light from optical fibers to on-chip waveguides. Typical cross sections of active InGaAsP
waveguides are depicted in Fig.[.22]

“http:/ /www lionixbv.nl/
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Figure 4.21: Waveguides based on silicon nitride (SigNy, n = 2.1 at 1550 nm) and silicon dioxide
(SiO2, n = 1.44 at 1550nm). These materials have a wide transparency window ranging from
wavelengths from below 500 nm to 2 pm. Silicon nitride technology is commercially offered under
the label “TriPleX”. (a) Schematic waveguide cross section; (b) Cross-sectional view of fabricated
waveguide; (Figures adapted from http://www.lionixbv.nl/)

AlGaAs/GaAs waveguides

GaAs-based semiconductor materials allow for monolithic integration of devices for the 0.5 ym
wavelength range. Such components are used for short-distance interconnects, in scanners and in
CD-players. As in the InP/InGaAsP material system, waveguide structures are typically small
(1-2 pm lateral dimensions) and fiber-chip coupling can hence be challenging.

(a) contact Ridge (b) Mesa Contact

\ A\ NN AN

InGaAsP InGaAsP n—InP
(active) (active)
n* - InP n* - InP
(substrate) (substrate)

Figure 4.22: Active waveguides made of III-V-compound semiconductors. The active regions are
electrically pumped; the pump current I is depicted in blue. (a) Ridge-waveguide structure; (b)
Channel waveguide structure; (Figures adapted from [2])

4.5.6 Silicon-on-insulator (SOI) waveguides

Silicon is transparent at infrared telecommunication wavelengths and offers the potential to process
optical devices in standard CMOS electronic fabs. This makes the material system particularly
attractive for the co-integration of electronic and photonic devices, and substantial research effort is
currently dedicated to silicon photonics. Waveguides are fabricated in a thin silicon layer (n = 3.48
at 1550nm, thickness ~250nm) which is optically isolated from the substrate material by an
intermediate silica buffer layer (n = 1.44 at 1550 nm, thickness ~ 2 um). The fabrication process
is illustrated in Fig.[£:23] The most crucial step is the definition of the waveguide structures.
This requires highly sophisticated optical lithography systems operating at deep-UV wavelengths
(typically 193 nm), thereby enabling resolutions smaller than 50nm. After development, the resist
structure can be used as an etch mask to structure the underlying silicon layer with reactive ion
etching (RIE). The transfer of the waveguide structure to the silicon layer can be done either
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(e.g., reactive ion etching)

Figure 4.23: Fabrication of silicon-on-insulator waveguides by lithography and reactive ion etch-
ing.

directly, as shown in Fig.[£.23] or via an intermediate hard mask of, e.g., silicon nitride. Due to
the high refractive index contrast between the core and the cladding material, silicon-on-insulator
nanowire waveguides can have radii of curvature as small as 1 um without appreciable radiation
loss. On the other hand, the high index difference leads to strong scattering of light at the rough
waveguide sidewalls ans hence to appreciable optical propagation loss.
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Chapter 5

Optical fibers

Optical fibers are flexible filaments made of a transparent materials such as fused silica, speciality
glasses or polymers. They are often not much thicker than a human hair (~ 100 ym diameter), and
in the case of single-mode fibers, light is only carried in a core region of less than 10 um diameter
in the center of the fiber. Today, many different kinds of optical fibers for various applications are
commercially available, covering wavelengths from the ultraviolet to the infrared. They are used in
optical communications, but also in fiber-optical sensors, optical metrology and for spectroscopic
applications. In this section, we will introduce the basic concepts of wave propagation in fibers,
we will discuss different types of optical fibers, and we will give an overview on current fiber
technologies.

5.1 Optical fiber basics

5.1.1 Silica fibers - a historical perspective

Silica-based optical fibers are the most important transmission medium for long-distance large-
capacity optical communication systems. One of the most important characteristic of an optical
fiber is its loss as a function of the wavelength, see Fig.[5.1l Early glass fibers in the 1960’s showed
transmission losses of typically 1000 dB/km - by far too much to be a viable solution for optical
communications. In 1966, however, Charles K. Kao and George A. Hockham showed that these
losses were mainly caused by impurities in the glass, not by a fundamental problem with the
technology itself. They estimated that, by removing the impurities, optical attenuations below
20 dB/km can be achieved in silica fibers, which would make them a practical communication
medium. For this discovery, Kao was awarded the Nobel Prize in Physics in 2009. Early optical
communications in the 1970’s focused on the first transmission window between 800 nm to 900 nm,
since fibers had a local minimum in the attenuation curve and GaAs-based optical sources and
photodetectors were available at these wavelengths. In the following decades, losses in the region
between 1100nm and 1600 nm could be reduced by several orders of magnitude by diminishing
the concentration of hydroxyl ions and metallic ion impurities in the fiber material. This region
is referred to as the “long-wavelength-region”. Two optical communication windows are defined
here: The second window, centered around 1300 nm, and the third window around 1550 nm. The
second generation of fiber-optic communications was developed in the early 1980s, operating at
around 1300 nm and using InGaAsP lasers. In the 1990s, third-generation fiber-optic systems
appeared, operating at 1550nm, where fiber losses could be reduced to below 0.2dB/km. The
lowest transmission loss ever demonstrated in a silica fiber is 0.154 dB/km [33], which corresponds
to a power loss of 50 % after 20 km. However, this value was achieved for a fiber with a pure silica
core and fluourine-doped cladding with a slightly lower refractive index. In prevalent single-mode
fibers the core region is doped with germanium to increase the refractive index, which leads to

78



slightly higher loss figures of approximatelyﬂ 0.20dB/km.

With decreasing propagation loss, longer transmission distances became possible, and dispersion-
induced pulse spreading became a limiting factor. These problems were overcome by using nar-
rowband (longitudinally single-moded) laser sources and dispersion-shifted fibers or combinations
of standard single-mode fibers and dispersion-compensating fibers. The principles of dispersion
compensation will be presented in Section [5.6.2
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Figure 5.1: Propagation loss and transmission windows of optical fibers made of silica. In the
early 1970s, fiber losses were of the order of 10 dB/km, with a local attenuation minimum between
800nm and 900 nm. Early fiber links relied on this so-called first transmission window, using
GaAs-based optical sources and photodetectors. In the following decades, losses in the region
between 1100 nm and 1600 nm could be reduced by several orders of magnitude by diminishing the
concentration of hydroxyl ions and metallic ion impurities in the fiber material. In combination
with InGaAsP lasers, this led to communication systems that use the second window around
1300 nm and the third window around 1550 nm. (Figure adapted from [17])

5.1.2 Various types of optical fibers

Various kinds of optical fibers with different cross-sectional refractive index distributions exist,
see Fig.[5.2] Each fiber type has its own advantages and disadvantages and is therefore suited for
certain application fields only. Optical fibers can be subdivided in three groups:

ISee, e.g., data sheet of Corning SMF28 standard single-mode fiber,
http://www.focenter.com/Fiber%200ptic%20Center %5Ccorning%5Cdatasheets %5Csmf-28.pdf
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Step-index fibers are characterized by an abrupt transition between the core and the cladding
region. The index difference is often specified by the relative refractive index difference A which
relates the core index n; and the cladding index na,

ni—nj

A =
2n?

(5.1)
For silica-based step-index fibers, relative index differences are usually smaller than 1%. The
index difference is achieved by either doping the core (e.g., with germanium) or the cladding
(e.g., with flourine), see Fig.[5.2](d). Single-mode step-index fibers allow for low-loss broadband
transmission, but coupling to and from these fibers is challenging due to the small core diameter
of typically less than 10 pm. Multi-mode step-index fibers with core diameters of typically 50 um
facilitate coupling, but suffer from large intermodal dispersion and are therefore only used for
short transmission distances. In extreme cases, core diameters of plastic step-index fibers can be
as large as 1 mm with refractive index differences of, e.g., 7%. Such fibers are mainly used in
industrial environments, where robustness and easy coupling are important and data rates are
rather low.

In graded-index fibers, the refractive index decreases continuously from the maximum value
n1 at the fiber axis to a constant value ns in the cladding region. The relative index difference
in silica-based graded-index fibers is usually less than 1%. Large core diameters of ~ 50 ym still
allow for easy coupling, while dispersion is smaller than in comparable step-index ﬁbersﬂ

For special applications, fibers with non-rotationally symmetric index profiles are used.
Holey fibers, e.g., consist of a single material with a periodic or an aperiodic array of air holes
that are running in parallel to the fiber axis. The presence of air holes reduces the average
refractive index in the cladding region. In a similar arrangement, multiple reflections from dielectric
interfaces between the air holes and the bulk material lead to the formation of an optical bandgap
and hence to confinement of light to the core of the fiber. In polarization-preserving fibers, the
effective index of refraction is increased in two regions that are positioned diametrically with
respect to the waveguide core, Fig.[5.2|(g). This leads to the formation of two eigenmodes that
are predominantly linearly polarized - one parallel to the direction in which the refractive index
is raised, and one perpendicular to it.

5.1.3 Cylindrical coordinates and refractive index profile representation

For rotationally symmetric index profiles, cylindrical coordinates (polar coordinates) (r, ¢, z) are
used to simplify the analysis. For more details on the relation between cartesian and cylindrical
coordinates and on the use of differential operators in polar coordinates, see Appendix[A.3] To
simplify the analysis, we make use of the fact that for usual operating conditions, the fields are
well confined to the waveguide core and do not reach far into the cladding. We assume, as an
approximation, that the cladding is infinitely thick. For a uniform waveguide, the refractive index
profile is independent of ¢, z. For a generalized representation of the refractive index profile, we
use a model function of the form

_ n% [1—2Ag(§)] for0 <r < a,

2
”(T)—{@H—M]:ng fora < r < oo, .

where g(r/a) represents the so-called profile function fulfilling ¢ (0) = 0 and ¢ (1) = 1. In this
equation, the refractive index on the fiber axis is denoted as n;. The relative refractive index
difference A was already defined in Eq. . Note that, in this representation, the index profile
is represented by a function that is formally continuous at the core-cladding interface. Step-index
profiles are then represented by a profile function g(r/a) that has an infinitely large slope. An
important class of profile functions is represented by the so-called power law profiles,

r r

g (*) = (f) 1 0<g<oo. (5.3)

a a

2This is explained in more detail in the lecture “Field Propagation and Coherence” by W. Freude.
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Figure 5.2: Optical fibers exist in a wide variety of materials and cross-sectional refractive index
profiles. Each fiber type has its own advantages and disadvantages, which makes it suited for
certain application fields only. (a) Multi-mode step-index fiber; (b) Graded-index fiber; (c) Single-
mode fiber; (d) Silica-core fiber with fluorine-added cladding; (e) Plastic fiber; (f) Holey fiber; (g)
Polarization-preserving fiber (Figure adapted from [11])
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For ¢ — oo a step-index profile results (n = ny for 0 < r < a, and n = ns for r > a), whereas
finite ¢ leads to various types of graded-index profiles. The profile exponent (“grading parameter”)
g may be chosen such that intermodal dispersion becomes minimum. The choice of ¢ = 2 defines
a so-called parabolic index profile.

5.1.4 Maxwell’s equations in cylindrical coordinates

For the mode fields, an ansatz equivalent to Eqgs. (3.59) and (3.60) can be formulated in cylindrical
coordinates:
E(r,t) = £(r.) exp j (wt — 2)) (5.4
H(r,t) = H(r,p) exp (j (wt — B2)), (5.5)

Writing Maxwell’s curl equations in cylindrical coordinates (see Appendix, we obtain the
following relations for the mode field components:

10€,

" O = —jwpoH, (5.6)
—jBE, - ‘98% — —jwpt, 5.7)
% <a(gf“°) a;;) = —jwpoH, (5.8)
and
. a;; = jweon’E, (5.9)
—jBH, — % = jweon’E,, (5.10)
! (8(;” - 5’;;) — juweon’c. (5.11)

Using these relations, the transverse field components can be expressed by the longitudinal com-
ponents,

g = B ( — &p> (5.12)
_ J B 3§z _ OH,

€=~ k2n2? — g2 (r ) wHO "5y > (5.13)
_ j OH, B wegn? OF,

i, = kin? — 32 (ﬁ or r o Op ) (5.14)
= — J é 8ﬂz 2 aéz

H,= R = (r 95 + wepn o (5.15)

These relations will be used in the following to first formulate the mode field ansatz in terms of
&, and H,. The transverse mode field components can finally be derived from the solution for the
z—components.

5.2 Step-index fibers
5.2.1 Wave theory of step-index fibers

The analysis of guided modes in step-index fibers proceeds in a similar way as for the slab wave-
guide. First we use a mode ansatz for the longitudinal mode field components £, and H,, and we
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formulate a solution based on the mode propagation constant S as an unknown free parameter.
An implicit equation for the mode propagation constant 5 can then be obtained by enforcing con-
tinuity of the appropriate field components at the core-cladding interface. By numerically solving
the implicit equation for 5, we can calculate the mode field components £, and H,, from which
all other components can be derived.

Wave equation and separation of variables

Within the homomgeneous core and cladding regions, the different components of the vectorial
wave equations, Eqs. (2.24) and (2.25)), are decoupled. Expressing the V2—operator in cylindrical
coordinates and using the mode ansatzes Eqs. (5.4) and (5.5, the wave equations can be written
as

19 9L, 1 32§Z 2,2 2 —

a( m) 3 gtk =AY E =0 (5.16)
1 a 8ﬂz 1 aQﬂz 2,2 2 _
a< ar) 72 g+ (ko = )’ =0 (5.17)

We may represent these relations by a single equation

2
19 <7" 8&?(7“,90)) + 1) + (kgn®

o \" o )t T —B*) & (r,¢) =0, (5.18)

or

where ¥ can stand for £, or H,. For the solution we assume that the r-dependence can be
separated from the ¢-dependence by an ansatz of the form

Y(r,p)=g(r) h(p). (5.19)
Inserting Eq. into Eq. (5.18), we obtain
ro 0 dg (r) 2 (72 2 2 1 9*h (¢)
—_ —_— — = -2
ok (r = >+r (kgn® — 8 )+h(<p) R 0 (5.20)
Cl C2

The left part depends on 7 only, whereas the right part is purely p-dependent. Since the relation
must hold for all » and ¢, both parts must be constant and Cy; = —Cj.

Let us first consider the p-dependence and the corresponding boundary conditions. As a matter
of fact, h () must be periodic in ¢,

h(p+2m) = h(p) (5.21)
The basic solution for A is hence given by
cos (vy)
h(p) = or forv=0,1,2..., (5.22)
sin (vp)

Note that for v = 0, we obtain the trivial solution h = 0 and hence ¥ = 0 for the case of the
sin (vp)-dependence. As we will see later, this corresponds to the case where one of the longitudinal
field components £, or H, vanishes, while the other is nonzero. The corresponding modes are
denoted as TE or TM modes.

Inserting the basic solution for h (), Eq. in Eq. , we obtain a differential equation
for the r-dependence,

»g(r)  dg(r)
2
" or? tr or

This relation corresponds to the Bessel differential equation which is solved by Bessel functions
and modified Bessel functions, see Appendix [29]. Two cases have to be distinguished:

+ [(kgn® = 8%) r* =Pl g (r) = 0. (5.23)
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1. k. = kin? — 32 > 0: This is the case inside the waveguide core, i.e. for 0 < r < a and
n = ny. The field oscillates as a function of r. The general solution reads
g(r)=CyuJ, (uf) +C5Y, (uf) (5.24)
a a
where J, (Y,) denote Bessel functions of the first (second) kind of order v, and where the
transverse phase constant is given by

u=ay/n3kE — 2 (5.25)

2. kg}Q = 2 — k3n3 > 0: This is the case in the cladding outside the waveguide core, i.e. for
r > a and n = ng. The field behaves monotonously as a function of . The general solution
reads

9(r) = Col, (uz) + CrK, (uz) (5.26)

where I, and K,, denote modified Bessel functions. The transverse cladding constant is given

by
w =ay/B? — n3k3 (5.27)

The set of general solutions according to Eqs. and can be further restricted by requir-
ing “physically meaningful” field profiles. For the Bessel function of the second kind, we observe
that |Y, (uZ)| — oo for r — 0, see Fig.[5.3{(a). We may hence conclude that C5 = 0 - other-
wise the mode field would have a singularity at » = 0. Likewise, we find for the modified Bessel
functions that |L, (u§)| — oo for r — oo, Fig.(b). To ensure that the field is localized to the
waveguide core, we must hence require C7 = 0. The complete solution for ¥ (r,¢) can then be
written as:

AlJ, (uf) cos (v + 1) for0<r<a
W (r, ) = a 5.28
Z(r,e) {A éi%ﬁ))) K, (ul) cos(vy + 1) for r > a (5.28)

where v =0,1,... andwE{O;g .

Solutions for £, and H,

From Eq. (5.13)) we find that 0H, /0r and 9, /O¢ must have the same p-dependence. We conclude
that, if 2, has a cos (v¢)-dependency, £, must have a sin (v¢) and vice versa. The z-components
of the electromagnetic field can hence be written as

Ady (ug for0<r<

éz (7', SO) == Jy(gl;a) COS’EVQO + w) or = r -~ a (529)
A K, (w) Ky (Ua) cos (vp + 1) forr >a
B Jy (ug) si for0<r<

ﬂz (’I", 90) = J (Sj)’ba) o (VSO + w) orv=rza (530)
B KZ(w) K, (“2) sin (v + ) forr > a

where v = 0,1, ... andwe{o;g .

5.2.2 TE-, TM- and hybrid modes of step-index fibers
Transverse-electric (TE) modes
For v =0 and ¢ = 7 the longitudinal electric field component vanishes,

E.(rp)=0 (5.31)

) B Jo (ut for0<r<a (5.32)
i, \ry)= Béﬂﬁl)) Ko (ug) forr > a |
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Figure 5.3: Plots of Bessel functions and modified Bessel functions. (a) J, and Y, denote v-th
order Bessel functions of the first and second kind, respectively. Note that |Yl, (u£)| — oo for
r — 0, and that the functions are hence not suited for representation of a finite electromagnetic
field component within the waveguide core (near » = 0). (b) I, and K,, denote v-th order modified
Bessel functions. Note that |I, (uZ)| — oo for 7 — oo, and that the functions are hence not
suited for representation of a finite electromagnetic field component in the waveguide cladding
(for r — 00). (Adapted from [29])

This leads to the so-called transverse-electric (TE) modes, which have only three nonzero electro-
magnetic field components,

E,=0;E,#0, £, =0 (5.33)
H,#0; H,=0; H,#0 (5.34)
Inserting Egs. (5.31)) and ( in Egs. (5.12) and -, we can derive the other electric field

components,

g, =0 (5.35)
=2 ] ( ) for0<r<a
£, = - 5.36
=Jwho { w“ éi’)izj)) K, ( ) forr > a (5.36)
The continuity of £, at r = a yields the dispersion equation for TE modes:
J K
1 (u) | (w) (5.37)
uJo (u) w Ko (w)
where
u2 + ’(1)2 _ V2, (538)

and where the normalized frequency V for optical fibers is defined in analogy to Eq. (3.49),

V = akgy/n? —n3. (5.39)

Note that the continuity of H, at r = a reproduces Eq. (5.37). Eqs. (5.37) and ( must be
solved numerically to obtain u, w, and hence S.
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Transverse-magnetic (TM) modes

Likewise, the ,-component vanishes for v = 0 and ¢ = 0,

AJO(ui) for0<r<a
E,(ryp) = W e . 5.40
£.(ny) {A Ii(;%w)) Ko (ua) for r > a ( )
H, (r,0) =0 (5.41)

For the resulting transverse-magnetic (TM) modes, there are again only three nonzero electro-
magnetic field components,

E,F0,E,=0,E, #0 (5.42)
H, =0 H,#0; H,=0 (5.43)

Deriving the #,,-component by means of Eq. (5.15) and enforcing continuity at 7 = a, we obtain
the dispersion equation for TM modes:

L _ (n) Ki(w) (5.44)

uJo (U) ni w Ky (w)

u? +w? = V2. (5.45)

The continuity of n%£, at r = a reproduces Eq. (5.44). Numerical solution of Egs. (5.44) and (5.45])
yields u, w, and hence .

Hybrid modes

In the general case, both £, and H, are nonzero. The resulting modes are referred to as hybrid

modes. By inserting Egs. (5.29) and (5.30) into Egs. (5.12) to (5.15), we can derive all transverse

field components. The field components must satisfy the usual boundary conditions at r = «a
which, after some calculation [25], leads to the dispersion equation for hybrid modes,

O A [EC O
d {ul? - 132] lulQ * (Z?)Q 1321 (5.47)

where
u? +w? =V? (5.48)

As in the previous cases, numerical solution of Egs. (5.44)) and (5.45) yields u, w, and hence /.

Dispersion relation, single-mode condition, mode designation and fields

Solving the dispersion relations for different normalized frequencies V', we can derive the various
dispersion relations of different step-index fiber modes, see Fig.[5.4l Two integer subscripts v and
1 are used to describe the mode fields. The first subscript v as used in the previous sections relates
to the azimuthal variation of the fields and is therefore also called the azimuthal mode index. TE-
modes exist only for v = 0 and are hence rotationally symmetric. They are denoted as TEq,-modes,
where the nonzero mode index p denotes the number of extremal points of the azimutal electric
field component £, along the radial direction r. Likewise, the TMy, is rotationally symmetric,
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and the number of extremal points of the azimutal magentic field component H , along the radial
direction r is given by the nonzero mode index p. The hybrid EH,, and HE, ,-modes exist for
v > 1 and are twofold degenerate with a sin (v¢) and cos (vp)-dependence. The designation as
EH,, or HE,,-modes is somewhat involved and based on the field with dominant longitudinal
component: For a dominant #,-component, the mode is referred to as an EH whereas a
dominant £,-component leads to a HE, ,-mode.

The fundamental mode turns out to be the hybrid HE;;-mode. Assuming an infinitely extended
cladding region, this mode does not have a lower cutoff frequency, i.e. there is always at least one
guided mode (with a two-fold polarization degeneracy) in an ideal step-index fiber. The upper limit
of the single-mode region can be derived from the cut-off frequency of the next higher-order mode
set. Observing that 8 = nokg, w = 0 and hence V' = w at cut-off, we find that no higher-order
modes exist if

Vi

where Vp; denotes the first zero of the Oth-order Bessel function Jy (V).

From Fig.[5.4] we can observe that the modes of a step-index fiber form groups with similar
dispersion characteristics and cutoff-frequencies. This applies, e.g., to the TEy;-, TMp;-, and
HE5;-modes, or to the HE{5-, HE3;-, and EH{;-modes. For low index-contrast fibers, these mode
families can be represented by a set of linearly polarized modes, see Section[5.2.3|
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Figure 5.4: Dispersion relations of the various modes of a step-index fiber. The fundamental mode
of a step index fiber is the hybrid HE;;-mode. The normalized cutoff frequency Vy; =~ 2.405 for
first higher-order mode is given by the first zero of the Oth-order Bessel function Jy (V). Note that
the higher-order modes form groups with similar dispersion characteristics and cutoff-frequencies,
see, e.g., the TEg;-, TMy1-, and HE9;-modes, or the HE9-, HE3;-, and EH;;-modes. (Adapted
from [6])
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5.2.3 Linearly polarized (LP) modes

In the last section, a rigorous analysis for the TE, TM and hybrid modes of a step-index fiber has
been described. No special assumptions had to be made concerning the index difference between
the core and the cladding material, and the results are valid for any step-index waveguide with
rotational symmetry. For practical fibers, however, the relative refractive index difference A is
very small, typically 0.3%. This allows drastic simplifications of the mode analysis by using so-
called linearly polarized (LP) modes. To this end, we impose two fundamental assumptions, the
validity of which will be confirmed with hindsight by comparing the results to those of the rigorous
analysis.

First, we assume that the wave equations for weakly inhomogeneous materials, Eqgs. and
, can be used, where the equations for the different Cartesian coordinates are decoupled,

V2E, + (kgn® — B*) E, =0 (5.50)

Second, we assume that one transverse Cartesian electric field component is usually much stronger
than the other electric field components. This is in analogy to Marcatili’s treatment of a rectan-
gular waveguide. Without loss of generality, we assume that the £ -component of the modal field
dominates whereas £, vanishes, |€,[ > |£,| and |§y‘ = 0. Following this approach, the equation
for the &£,-component is formulated in analogy to Eq. in polar coordinates,

L0 (i) 10 ()

r Or r2  Oy?

or + (kgn® — B%) & (r, ) =0, (5.51)

where ¥ (r, ) represents the £ _-component of the modal field. As discussed in Section ,
this equation is solved by a separation ansatz which leads to a Bessel differential equation for the
dependence on r. The Bessel functions J, (modified Bessel functions K,) are again identified as
physically reasonable solutions in the core (cladding) region.

To match the boundary conditions at the core-cladding interface r = a exactly, the & -
component of the modal field must be decomposed in an &, -component and an &,-component
that obey different boundary conditions: The £,-component is tangential to the dielectric bound-
ary and must hence be continuous, whereas the &,-component that is normal to the boundary with
n%&, being the continuous quantity. However, since the index contrast is low, n?/n3 ~ 1, both
conditions are approximately fulfilled if we require ¥ (r, ¢) to be continuous across the boundary.

Using the same procedure as in Section ([5.2.2)), the solution of Eq. (5.51) can be written as

¥ (r,0) ATy, (ul) cos (ve +v) for0<r<a (5.52)
T7 = u ) -
=y A% K, (ul) cos (v + 1) for r > a

where v =0,1,2,... and ¢ € {0; 5}, and where
u? +w? =V?

The parameters u and w have to be determined from the boundary conditions of the longitudinal
field components at = a. To this end, we calculate the £ - component from Maxwell’s divergence
equation

V-D(r,t) = V- (en®(r)E(r,t)) =~ en’(r) V- E(r,t) =
o0&,

o€ .
= ¢on?(r) ( o+ a;yy — ] ﬂ52> ed@t=h2) — (5.53)

which for £, = 0 leads to

i 0€, j( ow sinsoaw>
= = oS — —

(5.54)

éz:_ﬂ ox B or r o Op
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Note that ¥ (r,¢) is assumed to be continuous across » = a and that ¥ (r, ) has identical ¢-
dependencies inside and outside the core, i.e., 0¥ /J¢ must also be continuous. Eq. hence
implies that 0¥ /Jr must be continuous as well at the boundary. This yields the characteristic
equation for the LP,,-modes:

ulJ!, (u) B wkK, (w)

= 5.95
J, (w) K, (w) (5.55)
where
u? +w? =V? (5.56)
Using the recurrence relations of the Bessel functions for v > 0,
T () = e () = 23, (), (5.57)
K, (w) = —K,_1 (w) — — K, (w), (5.58)
w
Eq. (5.55) can be rewritten,
_ K,_
uly1(u) _ wKyy (w)7 (5.59)
Jy (u) K, (w)
where
u? +w? =V (5.60)
In the special case v = 0, we can use the indentities
J_o(u)=(-1)"J, (uv) (5.61)
K_, (w) =K, (w) (5.62)
to obtain the dispersion relation for the LPg,-modes,
J K
uh(y)  wk (w) (5.63)

Jo(u) o Ko(’w) '

The relations (5.59) and can again be solved numerically, see Fig.[5.5] where the numerical
solution of Eq. (5.59)) is plotted along with the circular arc that represents the additional condition
u?+w? = V2 Eq. (5.60). The intersection points define the individual LP,,,-modes. The first index
v =0,1,2,3... relates to the azimuthal dependence of the dominant transverse field component:
There are 2v intensity maxima in azimuthal direction. The second index p = 1,2,3, ... labels the
various solutions for a given v and relates to the radial field dependence: The number of intensity
maxima in radial direction can be identified with u where, for v = 0, the intensity maximum
at = 0 has to be counted as well. The corresponding field patterns are plotted in Fig.[5.6
Note that each LPg,-mode is twofold degenerate since it represents two orthogonal polarizations
(dominant £, - and dominant £ -component). For v > 1, the LP, ,-modes are four-fold degenerate:
Two azimuthal dependencies cos vy, sin vy (rotated against each other by 90°) in two orthogonal
linear polarizations each.
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Figure 5.5: Graphical solution of the characteristic equation for LP-modes. The vertical branches
correspond to the numerical solution of Eq.[5.59] whereas the circular arc represents the additional
condition u? + w? = V2, Eq.[5.60, (Adapted from [6])

Relationship between LP,,-modes and hybrid, TE- and TM-modes

The linearly polarized LP,,-modes can be constructed by appropriate superpositions of hybrid,
TE- and TM-modes, see Fig.@ The fundamental LPy;-mode is equivalent to the HE;;-mode of
the step-index fiber. Both modes have no lower cut-off frequency and are hence always guided.
The LP;,-modes correspond to a superposition of the HE,,-, TEq,- and TMg,-modes, which
have similar dispersion characteristics, Fig. For v > 1, the LP, ,-modes can be represented by
a combination of HE, 1 ,- and EH,_; ,-modes. The correspondence between LP,,-modes and
hybrid modes can hence be summarized as

LPQH = HElp,a
LPlp, =4 HEQF«’ TEOM’ TMOp,y
LP,, < HE, 41, EH 1, forv > 1.

Cut-off frequencies

Consider the behavior of a certain waveguide mode as the frequency is decreased. The waveguiding
limit is achieved when the field extends into the whole cladding region, i.e., when 8 — noky. This
implies:

w = ay/B? —n3k3 = 0, (5.64)
u=+vVV2-w?2->V, (5.65)

Kl,,l (w)

) (5.66)
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Figure 5.6: Mode fields of LP,,-modes. The first mode index v = 0,1,2,3... (denoted as [ in this
figure) relates to the azimuthal dependence of the dominant transverse field component (2v inten-
sity maxima in azimuthal direction). The second index p = 1,2,3,... (denoted as m) gives the
number of intensity maxima in radial direction, where, for ¥ = 0, the intensity maximum at r =0
has to be counted as well. (Adapted from http://www.rp-photonics.com/multimode _ fibers.html)
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Figure 5.7: Linearly polarized (LP) and hybrid modes: The fundamental LPy;-mode is equivalent
to the HEq1-mode. The LP;-modes correspond to a superposition of the HE51-, TEg;- and TMg;-
modes. Note that the LPg,-modes and the LPj,_i-modes have identical cut-off frequencies.
(Adapted from [6])

From Eq.[5.63, we may hence conclude that J,_; (V) = 0 at cut-off. In other words: The nor-
malized cut-off frequency V,, . of the LP,,-mode is given by the u-th positive zero j,_; , of the
(v — 1)-th order Bessel function J,_1,

Vowe = Ju—1,s (5.67)
where u = 0 is counted as a zero of J,_1 (u) only for v = 0,

Vor,e =J-11 =0, (5.68)

‘/Ou,c = j—l,u = jl,,u,—l = ‘/é,u—l,c- (569)
This implies that the LPy,-modes and the LP; ,_;-modes have identical cut-off frequencies, see
Fig.
Number of modes in multimode fibers

If a multimode fiber is operated at a given normalized frequency V', the number of modes is
proportional to the number of Bessel zeros j, 1, that fulfill j,_; , <V, where v =0,1,2... and
w=1,2... For a coarse estimation of the number of guided modes, we use the fact that large
zeros of the Bessel functions can be approximated by [1]

1 3
jV—l,M ~ (M + EV — Z) T<V. (570)

In a v — p—diagram, the guided modes occupy a triangular area below the line defined by j,_1,, =
(,u+ %V - %) T, see Fig. The majority of the points correspond to modes that are four-
fold degenerate - each of them represents two azimuthal dependencies and two orthogonal linear
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polarizations. The number of guided modes can hence be estimated by

1 Vo1 Vo1 4 o V2
M9~4'2'2<w‘4)'<w‘4)m2v~2’ (5.71)
n
r 3
—+—
hNUH
1 Ny

Figure 5.8: Number of guided LP,,-modes in a step-index fiber. The guided modes are represented
by a triangular area below the line defined by j, 1, = (u + %I/ — %) m where v =0,1,2,3... and
uw=1,2.3.... The majority of the points correspond to modes that are four-fold degenerate.

5.3 Graded-index fibers

In the last section, we have considered ideal step-index fibers with homogeneous core and cladding
regions, for which closed-form expressions could be obtained. However, many fibers of practical
interest do not have a step-index profile - this is either by design or due to the manufacturing
process. So-called graded-index fibers (“GRIN-lenses”) are designed to have a parabolic index
profile, for which n? depends quadratically on the distance r from the fiber axis, i.e., ¢ = 2 in
Eq. (5.2). Other fibers are designed to have step-index profiles, but diffusion of dopants during
the manufacturing process leads to deviations from the ideal index distribution. In most cases,
however, the index profile can be assumed to vary monotonously in 7 and to be independent of
the azimuthal variable . We can then use Egs. and to represent n? (r).

In this section, we will only give a short outline of the analysis of graded-index fibers. We will
sketch how to calculate the modes of parabolic-index profiles and how to extend the analysis to
general power-law profiles. A more detailed analysis can be found in the lecture “Field Propagation
and Coherence (FPC)” [9] and in textbooks [5].

5.3.1 Infinitely extended parabolic profile

The parabolic index profile is represented by an exponent of ¢ = 2 in Egs. (5.2)) and (5.3). To
enable a closed-form solution, we may further assume that the index profile is infinitely extended,
ie.,

n?(r) = ni[l — 24g(r/a)] (5.72)

g(%)z £>2,1n0§r<oo (5.73)
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Strictly speaking, this is an unphysical assumption, because n?(r) would become negative for
r — 00, but errors are negligible for modes that are confined to the core and do not extend
far into the cladding. Under this assumption, closed-form solutions for the LP-modes can be
calculated by a similar procedure as the one applied to step index fibers.

First we assume that the refractive index profile is only weakly inhomogeneous and that we
may hence use the scalar form of the wave equations, for which the different Cartesian coordi-
nates are decoupled, see Eqs. and . In addition, we assume again that one transverse
Cartesian electric field component is much stronger than the other electric field components. For
the dominant field component, we again choose an ansatz of the form ¥ (r) = ¥ (r, p) exp (—jS2),
for which ¥ (r, ¢) must fulfill the wave equation for mode fields,

18@8%#)%16@(@

; or 9 r2 8802 + (k8n2 (’I") - ﬂQ) g(ﬂ SO) = 07 (574)

or

This relation can be solved by a separation ansatz for which the radial and the angular dependen-
cies are written as a product,

¥ (r,p) = Q(r) cos(vp + ), (5.75)

where v = 0,1,2,... and ¥ € {O; g} A differential equation for Q(r) can be derived [3I] . The
solution yields the so-called Gauss-Laguerre modes

ny —1)! r? v/2 —r2 /w2 v 2
Quu(r) = \/@ (u(iui)l)! (iTg) e /uE LY, (373)’ (5.76)

where the Gaussian field radius wg of the fundamental mode is given by

a2

wi = v/ (5.77)

L/(-f) denotes generalized, L/(EO) = Lj ordinary Laguerre polynomials of degree i and order v:

v Eog n (—z2)° . L(*V)("L’) —1)F —
L/(j/ )(x) = Z;) (%t’b) %’ ;811}% Mxﬂ = ( ﬁl) Y l/7 /’l/ = 07 17 27 AR
5.78
L@ =1, L) = —ctvtl, (5.78)
L (2) = L [22 = 20w+ 2)z + (v + D)(v + 2)] .
The propagation constants of the various modes can be calculated analytically,
) m |4 a?
=kivV1-26, — = =v+2u—1, Mpax = =3 W= —=. :
/6 1 ) A mmax7 m v+ 1% y Mma 9 3 W V/2 (5 79)
where the normalized index difference A is given by
A_TimnE  mmne (5.80)

Qn% ni

The fundamental mode has the transverse dependency of a rotationally symmetric Gaussian with
field radius wgy. All modes with principal mode number m = const belong to the same propagation
constant 5 and are therefore degenerate. As mentioned, the solutions of Eq. describe the
modes of an infinitely extended parabolic fiber, see Egs. and . They are equivalent
to the real (finite) index profile as long as the resulting fields do not reach significantly into the
cladding beyond the physical core-cladding interface at » = a. This is true for most of the modes
if V>V,
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A few measured mode fields are shown in Fig.[5.9] The mode index v is related to the azimuthal
field dependence cos (vy) or sin (vy), where 2v is the number of intensity maxima along the
circumference of the core. The mode index p denotes the various solutions for a given v and is
equal to the number of intensity maxima in radial direction, where, for v = 0, the maximum at
r = 0 has to be counted as well.

Figure 5.9: Gauss-Laguerre mode fields of a parabolic-index fiber (a = 23 um; Ay = 0.2; V =
46; A = 0.6328 ym). The mode index v is related to the azimuthal field dependence cos (v¢) or
sin (vg), where 2v is the number of intensity maxima along the circumference of the core. The
mode index p beam denotes the various solutions for a given v and is equal to the number of
intensity maxima in radial direction (including the maximum at r = 0 for v = 0). For this specific
fiber, the radius of the fundamental mode (v =0, = 1) is 4.8 ym.

Number of guided modes

The cutoff frequency Vg for the mode with index (v, ) may be estimated by observing that
B =ky,ie,d=A4Aand m = Mmuyes = %, at cutoff, see Eq. 1} Guided modes must hence fulfill
the relation

v
v+2u—1< 7 (5.81)

This corresponds again to a triangle in the (v, 1)-plane with corner points (% -1, 0) and (0, % + %)
Within this rectangle, most of the pairs (v, u) correspond to a four-fold degenerate mode (two



polarizations, cos (vy)- and sin (vy)-dependence). The number of guided modes can hence be
estimated to be

1 [V vV o1 V2
i (Y o0) ()< 655

Comparing Eqs. (5.71) and (5.82), we find that a parabolic index profile accepts approximately
only half the number of guided modes as a step-index fiber having the same relative refractive
index difference A.
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N |~
y
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— 1
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Figure 5.10: Number of guided modes in an infinitely extended parabolic index profile: The guided
modes are represented by a triangular area below the line defined by v+2u—1 = V/2. The majority
of the points correspond to modes that are four-fold degenerate.

5.3.2 General power-law index profiles

For arbitrary values of index profile exponent ¢, it is not possible to express the mode fields as
closed-form solutions. Instead, a semi-analytical approach based on a power series approximation
is usually used to represent the dominant transverse mode field component ¥ (r, ¢) within the core
region r < a ,

r

T(r,p)=A (f)y ici (2)z cos (vp + 1), (5.83)
i=0

a

where v =0,1,2,... and ¢ € {0; g} In the homogeneous cladding region, the field is represented
by the corresponding modified Bessel function K, (w) of order v. This leads to a recurrence
relation for the coefficients ¢; and to a dispersion relation of the form

Efio ici WK;/ (w)
Z?io Ci K, (w) ’

where w = ay/% — n3k2. A more detailed description of the analysis can be found in [5].

v+

(5.84)

5.4 Microstructured fibers

In traditional optical fibers, light is guided by total internal reflection in a fiber core whose refrac-
tive index is larger than that of the cladding area. In optical communications, the vast majority
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of fibers are built according to this concept. There are, however, other fiber structures in which
guidance of light relies on internal micro- and nanostructures. This enables dedicated fiber designs
for special applications. In this section, we will give a short overview on the underlying concepts.

Hole-assisted fibers

A large refractive index contrast between the core and the cladding region can be achieved if
air holes are used in the cladding region of the fiber. This allows for tight confinement of light
to the core and is often used in so-called highly nonlinear fibers (HNLF), see Fig.[5.11](a) and
(b). In these fibers, large optical intensities lead to nonlinear interaction and thereby to the
generation of new spectral components. When pumped with pulsed laser light, HNLF can be used
for supercontinuum generation, Fig.[5.11(c).

Enclosed

Figure 5.11: Highly-nonlinear microstructured fibers; (a) High index-contrast small-core fiber
consisting of a small triangular core which is held by two suspended membranes. Tight confinement
results from the fact that the high-index glass-core is predominantly surrounded by air. (Figure
adapted from [20]) (b) Sketch of a hole-assisted fiber (“holey fiber”) consisting of a solid core
and a cladding containing a large volume fraction of air holes. The diameter of the holes can
be much smaller than the wavelength such that the average refractive index of the core is lower
than that of the cladding (Figure adapted from [30]) (c) Supercontinuum generation using a
microstructured fiber: The strong confinement of light and the large interaction lengths lead to
strong third-order nonlinear interaction. High-power laser pulses launched into the fiber at one end
are spectrally broadened by a combination of four-wave mixing (FWM) and self-phase modulation
(SPM). (Figure adapted from http://www.bath.ac.uk/physics/groups/cppm/nonlinear pcf.php)

Bragg fibers

In so-called Bragg fibers, concentric rings of high- and low-index materials are arranged around
a central core, see Fig.[5.12|(a). At each dielectric interface, a small part of the light is reflected.
If the layer thicknesses are chosen appropriately, constructive interference occurs for the back-
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(b)

Air hole

el

Silica ng, Air hole

Figure 5.12: Photonic-bandgap fibers. (a) Bragg fiber, consisting of concentric rings of high- and
low-index materials that are arranged around a central core. The core may be solid or hollow
(hollow-core fiber). (b) Photonic-crystal fiber with solid core. The cladding consists of a regular
pattern of air holes. Multiple reflections from these air holes form a photonic bandgap. (c)
Hollow-core photonic crystal fiber. The existence of a photonic bandgap in the cladding can lead
to confinement of light in a low-index hollow core region. (Figures adapted from [25])

reflected portions, and light cannot propagate in the cladding regionﬂ Light injected in one end
of the Bragg fiber propagates along the fiber axis even if the refractive index of the waveguide
core is lower than that of the cladding. For some applications, it is even beneficial to use a hollow
waveguide core, e.g., for fibers that carry large optical powers as in laser-based material processing.

Bragg fibers are a special type of photonic-bandgap fibers, for which light propagation in
the cladding is prohibited by multiple reflections from periodically arranged objects. In lieu of
alternating layers, a regular pattern of air holes can also be used to form a photonic bandgap. In
this case, the fiber is referred to as photonic-crystal fiber, see next section.

Photonic-crystal fibers

Just like in Bragg fibers, where a one-dimensional transverse periodicity of the refractive index
profile leads to the confinement of light to the waveguide core, a two-dimensional arrangement of
air holes can also exhibit a photonic band gap. These fibers are referred to as photonic crystal fibers
(PCF) or holey fibers, Fig.[5.12)(b) and (c). PCF can have solid or hollow core regions. Hollow-
core photonic crystal fibers are often used for transmission of ultra-short high-power pulses or for
sensing and spectroscopy applications.

Mode analysis of microstructured fibers

The index profiles of microstructured fibers are not necessarily circular symmetric, see Fig.[5.12]
and As a consequence, numerical methods are generally needed to calculate the mode fields.
Such methods have been discussed in Section . An example of a numerical mode calculation
is shown in Figs.[5.13] and [5.14 Two modes are obtained - an E,-mode and an E,-mode. The
two modes are degenerate due to symmetry of the waveguide, i.e., they have the same effective
refractive index (n. = 1.4455), and any linear combination of the modes can again be considered
as a mode field, which does not change its shape during propagation along z.

3The phenomenon is also referred to as a photonic bandgap in analogy to semiconductor physics: In a semi-
conductor, the interaction of the electron probability density functions with regularly arranged atoms leads to the
formation of forbidden energy bands for electrons. In a so-called photonic crystal, a regular arrangement of mi-
crostructures leads to the formation of forbidden energies bands for photons. The corresponding wavelengths are
reflected from the surface of the structure and can not penetrate the photonic crystal. See, e.g., ref. [15] for more
details on photonic crystals.
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Figure 5.13: Numerical mode calculation of a photonic-crystal fiber. The structure is represented
by finite elements, the which can be adapted to the shape of the of the air holes.
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Figure 5.14: Fundamental modes of the photonic-crystal fiber as obtained from a finite-element
calculation. (a) Ey-modes. (b) E,-modes. Due to symmetry, the two modes are degenerate, i.e.,
they have the same effective refractive index (n. = 1.4455), and any linear combination of the
modes can again be considered as a mode field, which does not change its shape during propagation
along z.

99



5.5 Fiber technologies and fabrication methods

In this section, we will give a short overview on the prevalent fiber technologies and the corre-
sponding fabrication methods. We will first introduce the basic principle of fiber drawing and then
discuss some important material systems. More detailed information can be found in textbooks
such as [11], [10], or [32].

5.5.1 Fabrication of optical fibers

Fiber fabrication techniques can be divided in two basic categories: One-stage processes, where
the fiber is directly drawn from the liquefied base material, and two-stage processes, where a solid
preform rod is fabricated and then drawn into a thin thread, see Fig.[5.15]

One-stage processes

One-stage techniques are clearly simpler than their two-stage counterparts, and they allow for fast
fabrication and unlimited fiber lengths. As an example of a one-stage process, we consider the
so-called double-crucible method. This technique is often used to fabricate fibers from multicom-
ponent glasses with low melting points, which are sometimes also referred to as “soft glasses”.

A sketch of the double-crucible method is depicted in Fig.[5.15|(a). It comprises two heated
crucibles with a nozzle at the bottom. The inner crucible contains a melt of high-index core
material, whereas the outer one is filled with molten low-index cladding material. The melts
are combined in the nozzle, where the molten core material is exposed to the molten cladding.
Diffusion processes at the interface lead to graded-index profiles, which can be controlled by the
temperature in the diffusion region. The fiber diameter is continuously measured during the
drawing process and controlled by adjusting the drawing speed. The fiber is coated by resin which
is cured by UV radiation in a confocal reflector unit. Drawing speed is controlled by a so-called
capstanﬂ drive, and the fiber is finally coiled onto a bobbin.

A similar method can be used to fabricate so-called plastic-clad silica fibers or polymer-clad
silica fibers (PCS), i.e., optical fibers that have a silica-based core and a plastic cladding. The core
of the fiber is then drawn from the crucible of molten glass and directly coated with a polymer
cladding. This results in a simple and low-cost fabrication process but high transmission loss, such
that PCS fibers are only useful for short-distance transmission.

For fabricating plastic optical fibers, simple extrusion methods can be used in a one-stage
process, which is very similar to the double-crucible method. This allows for cost-efficient mass
production, but the resulting fibers do not reach top-level performance in terms of uniformity and
propagation loss and are only used in short-distance communications.

Two-stage processes

Two-stage processes, in contrast, are more complex and allow for drawing of finite fiber sections
only. However, they allow for better control of material composition, purity and fiber geometry
and are hence used for fabrication of low-loss single-mode silica fibers. An apparatus for drawing
of optical fibers in a two-stage process is depicted in Fig.[5.15(b). Drawing starts from a solid
preform rod, which has a cross-sectional profile similar to that of the fiber. The lower end of the
preform is heated by a graphite filament heater. For silica glasses, typical temperatures amount to
2000-2100°C. A protective Ar gas atmosphere is used to prevent oxidation of the filament. The
fiber is then drawn from the molten end of the preform in a similar way as in the double-crucible
method. The fabrication technique for the preform rod depends strongly on the involved materials
and will be discussed in more detail in the following sections.

4A capstan drive usually consist of a rotating spindle which is in contact with one or more (rubber) wheels,
so-called pinch rollers. Capstan drives were originally developed to move tapes in various kinds of tape recorders.
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Figure 5.15: Drawing of optical fibers. (a) One-stage process: The fiber is directly drawn from
liquefied base materials, which are provided by a set of two crucibles (double-crucible method).
(b) Two-stage process: The fiber is drawn from a solid preform, which can, e.g., be fabricated by
chemical vapor deposition (CVD), see Section/5. (Figure adapted from [11])
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5.5.2 Fiber technologies

Glass is by far the most common material used for optical fibers, but not all glasses are useful for
fiber fabrication. Glasses in general are noncrystalline solids, in which the molecules are arranged
randomly. Glasses can be thought of as liquids with the molecules frozen in place by very fast
cooling. The most prevalent type of glass in everyday’s life is the so-called soda-lime-silica glass
(German: Kalk-Natron-Glas) which consists mainly of SiOy (71-75%), NaOs (12-16%), and CaO
(10-15%) and is used for window panes, bottles, jars etc. However, due to high absorption, soda-
lime-silica glass is not usable for optical fibers. Instead, special optical glass compositions or highly
pure silica glass with lower attenuation is used.

Fibers made from optical glasses

Optical glasses are available in different compositions covering a large range of refractive indices
ranging between 1.44 and 1.8 at visible wavelengthﬂ Attenuation coefficients typically amount
to 1dB/m, which is too high for long-distance optical communications, but sufficiently low for,
e.g., fiber bundles for illumination and image-transmission in endoscopic applications.

Glass fibers are either drawn from solid preforms, which are usually fabricated by the so-called
rod-in-tube method, see Fig.[5.16] In this technique, a high-index glass rod is inserted into a
low-index jacket tube, which is then collapsed around the rod by heating. To minimize scattering
loss, the core cladding interface must be very smooth and clean. This is usually achieved by fire-
polishing. There are also other methods where the molten core glass is poured into the cladding
tube or sucked into the tube using a vacuum pump. Alternatively, soft-glass fibers can be directly
drawn from liquefied base materials in a one-stage process, see Section[5.5.1

Preform
Jacket tube

5

Core rod l Heat source

Figure 5.16: Rod-in-tube technique: A core rod of glass with high refractive index is inserted into
a glass tube with lower refractive index, and the two pieces are fused together. (Adapted from
http://heraeus-quarzglas.com)

Low-loss silica glass fibers

Transmission fibers for long-distance optical communications consist of highly-pure fused silica
(amorphous SiO3, German: Quarzglas). Even smallest impurities of metal ions such as Cr, Mn,
V, Fe or Cu lead to considerable absorption loss such that purity grades of the order of 0.1 ppb are
needed. At the same time, a highly uniform fiber geometry is essential to keep scattering losses
small. This can only be achieved in an advanced two-stage fiber drawing process. State-of-the-art
silica fibers have propagation losses of approximately 0.2 dB/km.

5See, e.g., the Schott glass catalogue, http://www.schott.com/advanced optics/english/tools downloads/download/
index.html#Optical %20Glass.
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The highly pure preform material is made synthetically by oxidizing silicon tetrachloride (SiCly)
in a chemical vapor deposition (CVD) process yielding highly pure small glass particles, see
Fig.[5.17 This so-called silica soot can then be melted into a compact preform. To increase or
decrease the refractive index, small concentrations of dopants are added. Adding small amounts
of, e.g., GeCly or POCI;3 to the gas mixture yields GeOs or P5O5 and leads to an increased re-
fractive index. In a similar way, the addition of Flourine (F) leads to a decreased refractive index.
To minimize the impurity of the deposited materials, the CVD processes exploits the fact that
the vapor pressure of liquid SiCly and GeCly is much higher than that of impurity metal halides
such as VCly and FeCls, see Fig.[5.18 Hence, if SiCly and GeCly are evaporated at, e.g., 1 atm
pressure and 65 °C, VCl; and FeCls stay in the liquid and are not deposited on the preform.

To fabricate the preform out of the material gases, three basic methods can be used. In the
inside vapor deposition method (IVD), the material vapors are mixed with purified oxygen and
led into a silica tube which is heated from outside, e.g., by an oxyhydrogen flame, see Fig.[5.17|(a).
The material vapors are oxidized and form the silica soot, which is fused to the glass wall as
the flame passes. Instead of a flame, a microwave plasma can also be used to heat the tube and
to invoke oxidation of the material gases; this technique is also referred to as plasma-activated
chemical vapor deposition (PCVD) .

In contrast to that, the outside vapor deposition (OVD) deposits the soot on a rotating
rod of carbon or ceramics by injecting the material gases directly into the oxyhydrogen flame,
Fig.|5.17(b). After removing the starting rod, the soot is fused into a compact preform in a
furnace. In the OVD technique, the deposited soot contains OH™-ions, which would lead to
increased fiber loss and must be removed in a drying process by flushing the preform with Cl, at
elevated temperatures before fusing it into a preform. Still, outside vapour deposition suffers from
the fact that the starting rod must be removed, which may lead to irregularities in the refractive
index profile of the core.

Similarly, the material gases are injected into the torch in the vapor axial deposition (VAD)
technique, see Fig.[5.17|(c). The preform is rotated and slowly pulled upwards as the glass soot
is deposited. As in OVD, OH -ions must be removed from the the deposited soot, and the soot
root must be fused into a solid preform. Multilayer structures can be achieved by a suitable
arrangement of torches and careful adjustment of the proportion of material gases. In contrast to
IVD and OVD, VAD allows for preforms that can in principle be infinitely long.

Photonic-crystal and microstructured fibers

Photonic-crystal and microstructured fibers are drawn from solid preforms. The preforms are
fabricated from a stack of hollow glass tubes and rods, which is then enclosed into an outer tube,
see Fig.[5.19] Transmission losses are high when compared to conventional silica glass fibers, such
that microstructured fibers are mainly used for niche applications such as high-power transmission,
optical sensing or supercontinuum generation.

Plastic optical fibers (POF)

Compared to glass fibers, polymer fibers show a poor performance in terms of propagation loss.
As in polymer waveguides (see Section the main source of losses in plastic optical fibers
is absorption due to overtones of C-H-bond oscillations, see Fig.[{.18 Losses can be decreased if
hydrogen is substituted by deuterium (heavy hydrogen), chlorine or fluorine since the larger atom
mass of these materials shifts oscillations further into the IR. The fundamental oscillation of the
C-H-bond lies near 3390 nm, for deuterium it is 4484 nm and for Fluorine, the oscillation can be
shifted to 8000 nm.

Nevertheless, best laboratory POF still have losses of around 50 dB/km at best, and attenuation
of commercially available plastic fibers amounts to typically more than 100 dB/km, even at visible
wavelengths. Despite their low fabrication costs, polymer fibers can hence only be used for a
limited range of applications comprising, e.g., image transmission bundles or short-reach data
links in industrial or automotive applications, optical interconnects, or home installations.
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Figure 5.17: Silica preform fabrication using chemical vapor deposition (CVD) techniques. Highly
pure silica is made synthetically by oxidizing silicon tetrachloride (SiCly) in a CVD process. This
yields highly pure small glass particles, so-called silica soot, which is fused into a compact preform.
To increase or decrease the refractive index, small concentrations of dopants are added. (a) Inside

vapor deposition (IVD); (b) Outside vapor deposition (OVD); (c¢) Vapor axial deposition (VAD);
(Figures adapted from [I1])
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Figure 5.18: Absorption loss due to metal impurities and fabrication of low-loss silica glass. (a)
Absorption losses caused by metal impurities in silica glass amount to typically a few dB/m for
purity grades in the ppm range. To achieve losses below 1dB/km, purity grades of the order of
0.1 ppb are needed (Figure adapted from [10]). (b) Synthesis of highly pure silica glass: The vapor
pressures of impurity-metal halides such as VCl, or FeCly are significantly lower than that of fiber
materials and dopants (BCly, SiCly, GeCly, POCl3). Evaporation of, e.g., SiCly at 65° and normal
pressure leaves unwanted VCly or FeCly in the liquid phase and allows to synthesize highly pure
SiOq. (Figure adapted from [I1])
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Figure 5.19: Fabrication of microstructured fibers. (a) The preform is obtained from a stack
of hollow glass tubes and rods, enclosed by an outer tube. The axial holes of the preform are
transferred to the fiber during the drawing process. (b) Fiber cross section. (Figures adapted

from [10])
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Figure 5.20: (a) “Generic-ferrule” fiber connector: The fiber is held in the center of the ferrule,
the outer diameter is precisely matched to the inner diameter of the guide sleeve of the connector.
The connector body is directly attached to the outer tube of the fiber cable to provide strain
relief. (Figure adapted from [I0]) (b) Different kinds of fiber connectors. Green outer plastic
sleeves indicate fibers with angled physical contact (APC), i.e., the end of the ferrule is polished
at an 8°-angle to avoid reflections from an open fiber end. To avoid damage of fiber facets, it
should never be tried to plug an APC connector (e.g., FC/APC/SX/2.0) to a PC connector (e.g.,
FC/PC/SX/2.0) (Figure adapted from |http://www.lotuscope.com).

Polymer fibers can be fabricated either in a two-stage process by drawing from a solid preform,
or by a one-stage extrusion process [32]. The latter allows for cheap mass production of plastic
optical fibers.

5.5.3 Fiber-optic connectors and cables

Fiber optic connectors must enable reproducible low-loss connections of fibers with low back-
reflection. In the case of single-mode fibers with core diameters below 10 um, this requires quite
severe machining tolerances. An overview of common fiber connectors is depicted in Fig.[5.20] To
avoid back reflections from the fiber facet, some of them have the ferrule end-polished at an 8°-
angle. These fibers are referred to as angled physical contact (APC) fibers, in contrast to so-called
physical-contact (PC) fibers with a flat facet. APC fibers are usually indicated by a green plastic
sleeve, whereas PC fibers usually have black sleeves. To avoid damage of fiber facets, it should
never be tried to connect an APC to a PC fiber.

For practical applications, optical fibers need to be bundled and/or protected against environ-
mental influences. This is done by different fiber cables, an overview of which is shown in Fig.[5.21]
When used within protective plastic tubes, optical fibers are often embedded into a jelly which
allows the fiber to move freely within the tube. This avoids microbending and strain of the fiber
which could, e.g., be caused by differences in thermal expansion coefficients of the fiber and of the
tube material. When combining several fibers to multi-fiber cables or ribbons, so-called strength
members are integrated to avoid stretching of the cable. In addition, the individual fibers are often
stranded around a central steel wire. Stranding provides flexible stretching of the cable (similar
to a telephone cord). Multiple fiber cables can be combined to multi-unit fiber cables which may
contain additional strands such as power supply wires and gas pipes for keeping moisture off the
inside of the cable.
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Figure 5.21: Optical fiber cables (all dimensions in millimeters). (a, b, c, d) Single fibers with
different coating and buffer tubes. To avoid microbending and strain, optical fibers are often
embedded into a jelly which allows the fiber to move freely within the protective plastic tube.
(e, f, g) Various fiber-optic cables, comprising several fibers each. (h, i, j) Multi-unit cables with
additional strength members, electrical wires, or gas pipes that keep moisture off the inside of the
cable. The individual fibers are often stranded around a central steel wire, which enables more
flexible stretching of the cable. (Figure adapted from [I1])
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5.6 Signal propagation in single-mode fibers

Data signals propagating along optical fibers are usually impaired by two major effects: Fiber
attenuation and dispersion. If the propagating power is very high, nonlinear-optical effects occur
as an additional source of impairment. These effects comprise, e.g., stimulated Brillouin scattering,
stimulated Raman scattering, and third-order nonlinear interaction (Kerr-effect) leading to cross-
phase modulation, self-phase modulation and four-wave mixing. Nonlinear-optical effects are
analyzed in more detail in the lecture “Nonlinear Optics” and will not be considered further here.
In addition, we will focus our consideration to single-mode fibers, where dispersion is governed
by intramodal dispersion (chromatic dispersion) and polarization mode dispersion, see Section
Multi-mode fibers and intermodal dispersion is treated in more detail in the lecture “Field
Propagation and Coherence”.

5.6.1 Fiber attenuation

Fiber attenuation can be caused by various loss mechanisms and limits the length of the optical
link. For linear loss mechanisms, the amount of power lost per distance is proportional to the local
power propagating in the fiber,

dP (z)
dz

— —aP(2), (5.85)

where « denotes the attenuation coefficient of the fiber. This relation is solved by an exponential
power decay along the fiber,

_ a Py
P(z) = Pye % - =101 =alllge =4.34a. .
(2) oe” Y%, p; 0 gP(z) alllge Mo (5.86)

The power attenuation constant « (unit kmfl) is usually expressed by specifying the attenuation
a per distance z (unit dB /km).

The loss spectrum of a single-mode fiber is depicted in Fig.[5:22] In the following, we will
discuss different sources of fiber losses.

Material absorption (adapted from [2])

Material absorption can be broadly subdivided into intrinsic and extrinsic absorption. Intrinsic
absorption corresponds to the unavoidable absorption of the fiber’s base material, whereas extrinsic
absorption is due to impurities.

As explained in Section any material with a nonzero dielectric susceptibility (refractive
index n # 1) must have intrinsic absorption in some frequency range. For silica (SiO2) molecules,
electronic resonances lie in the UV region (A < 0.4 pum) whereas vibrational resonances occur in
the infrared wavelength range (A > 7 pum). Because of the amorphous structure of silica, these
resonances form broad absorption bands rather than narrow spectral lines. The overtones and
the decaying tails of these bands extend into the visible and near-infrared region and are denoted
as “UV absorption” and “IR absorption” in the loss spectrum depicted in Fig.[5.22] The intrinsic
material loss of fused silica is below 0.1dB/km (0.03dB/km) in the wavelength range 0.8 ym -
1.6 pm (1.3 pm —1.6 pm).

Extrinsic absorption, in contrast, results from impurities within the fiber. As mentioned
in the section transition metals such as Fe, Cu, Co, Ni, Mn and Cr absorb strongly in
the wavelength range between 0.6 ym — 1.6 ym. By synthesizing highly pure silica glass from
chemical vapor deposition (CVD) processes (Section , the concentrations of these impurities
can be kept below 1ppb leading to loss levels of less than 1dB/km. The main source of extrinsic
absorption in silica fibers is then caused by the presence of OH™-ions in the glass matrix. The
vibrational resonance of these ions occurs near 2.73 pm; its harmonic and combination tones with
silica resonances produce absorption peaks around 0.95 um, 1.24 ym, and 1.39 ym, Fig.[5:22] A
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Figure 5.22:  Attenuation spectrum of a Ge-doped singlemode silica fiber (A = 0.25%): For
large wavelengths, fiber losses are dominated by infrared (IR) absorption caused by vibrational
resonances of the molecules. For short wavelengths, the dominant loss mechanisms are Rayleigh
scattering caused by random density fluctuations of the amorphous glass matrix, and ultra-violet
(UV) absorption due to electronic resonances of the SiO3 molecules. The measured total attenua-
tion (“gemessene Gesamtddmpfung”) is displayed for two fiber types, one of which was fabricated
with vapor axial deposition (VAD), whereas the other was fabricated with modified chemical vapor
deposition (MCVD). Apparently, this specific MCVD process resulted in elevated concentrations
of hydroxyl (OH™) ions, which is clearly visible from the characteristic absorption peaks at around
0.95 pm, 1.24 pm, and 1.39 pm. Another loss peak occurs for wavelengths slightly below the cutoff
of the LP1; mode (around 1200nm). This is caused by coupling of power from the fundamental
to the next higher-order mode. Waveguide irregularities (“Unregelméfigkeiten des Wellenleiters”)
do not play a significant role for fiber losses. This is in sharp contrast to integrated optical high
index-contrast waveguides, where surface roughness is the main loss mechanism.
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Figure 5.23: Loss spectrum of conventional fiber and so-called all-wave fiber (“dry fiber”). (Figure
adapted from [2])

concentration of 1 ppm of OH™can cause a loss of (50dB/km) at 1.39 ym. In modern fibers, the
OH ™~ concentration can be kept below 0.01 ppm, which results in an absorption peak of less than
1dB/km at 1.39 pm. In so-called “dry fiber”, the OH~concentration is further reduced and the
1.39 pm absorption peak almost disappears. Such fibers can be used to transmit signals over the

entire band between 1.3 ym and 1.6 ym and are, e.g., marketed under the trade name “AllWave”
fiber.

Rayleigh scattering (adapted from [2])

Rayleigh scattering is a fundamental loss mechanism that arises from spatial fluctuations of the
refractive index. The amorphous nature of fused silica leads to random density fluctuations and
hence random fluctuations of the refractive index on a scale much smaller than the wavelength.
The scattering loss varies asEI A~%, and the corresponding fiber attenuation coefficient can be
written as

an="1. (5.87)
At X = 1.55 um Rayleigh scattering leads to losses of around 0.12 — 0.16 dB/km and represents
the dominant loss mechanism, Fig.[5.22]

Rayleigh scattering can be reduced by increasing the wavelength. This needs, however, mate-
rials with low IR absorption for wavelengths beyond 2 pm. Fluorozirconate (ZrF,) has an intrin-
sic material absorption of about 0.01dB/km at 2.55 um, but extrinsic losses are still at around
1dB/km. Chalcogenide glasses exhibit intrinsic minimum losses at wavelengths of about 10 pm,
with predicted attenuation of 1073 dB/km. Practical loss levels, however, are still larger than
those of silica fibers. Fused silica fibers therefore remain the mainstay of optical communication
systems despite considerable effort towards finding alternative materials.

Waveguide imperfections (adapted from [2])

An ideal perfectly straight single-mode fiber would guide the optical mode without any energy
leakage. Real fibers, however, can exhibit additional losses due to imperfections of the waveguide
geometry. This applies especially to multimode fibers, where power is coupled between different

6The the optical inhomgeneity can be considered as a Hertzian dipole with a constant dipole moment. The total
power radiated by such a dipole is propotional to w* and hence to A~%.
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modes by waveguide imperfections. Three main types of waveguide imperfections may usually
occur in single-mode fused silica fibers:

e Imperfections at the core-cladding interface, e.g., random core radius variations, can be
considered as index variations on a scale longer than the wavelength and lead to additional
propagation loss by so-called Mie scattering. These losses can be minimized by keeping the
relative core radius variations very small, typically below 1%, which results in a scattering
loss of typically less than 0.03 dB/km.

e Microbending, i.e., random axial distortions (“bends”) can occur when the fiber is pressed
against a rough surface, e.g. during cabling or inside a cable assembly that is pressing onto
the fiber. In extreme cases, this can lead to extremely large additional losses (100 dB/km).
Microbending losses can be reduced by appropriate cable assemblies and by keeping the
normalized frequency V of the fiber as large as possible (typically in the range between 2.0
and 2.4) so that mode energy is primarily confined to the core.

e So-called macrobends with bend radii of typically a few millimeters can constitute an-
other source of propagation loss, especially in multi-mode fibers. For a local radius of
curvature of R, the bend-induced fiber attenuation is proportional to exp (—R/R.), where
R.=a/ (n% - n%) For single-mode fibers, we typically have R, = 0.2 — 0.5um. For macro-
scopic bends, we usually have R > 5mm , and the associated losses are negligible in practice.

The sum of all aforementioned effects leads to the typical loss spectrum depicted in Fig.[5.22]
Single-mode fused silica fibers usually have minimum propagation losses around a wavelength of
1.55 um, and long-distance optical telecommunication systems usually operate in this wavelength
range. Other sources of optical loss in fiber-optic transmission systems comprise imperfect splices
or connectors. For extended fiber-optic systems, these localized losses are sometimes treated as
part of the entire cable loss.

5.6.2 Chromatic dispersion and dispersion compensation

In single-mode fibers, the fundamental mode can exist in two orthogonal polarizations and is
hence two-fold degenerate. Signal propagation is hence governed by polarization-mode dispersion
(PMD) and chromatic dispersion (CD) as the dominant effects.

As discussed in Section[3.4.3] chromatic dispersion (CD) results from the wavelength-dependence
of group velocity. The associated spread group delays can be expanded into a power series about
the center wavelength,

At
?9 = Oy Al + Dy AN? (5.88)
2me
C\ = —769) (5.89)

where C'\ denotes the chromatic dispersion coefficient (unit: —2°—), and where D) describes the
so-called dispersion slope. For waveguides with small index contrasts between the core and the
cladding, the chromatic dispersion coefficient can be written as a sum of the material dispersion

coefficient M) and the waveguide dispersion coefficient W,
Cy\ = M, +W,. (5.90)

The waveguide dispersion W) can be influenced by suitable choice of waveguide geometry. In
the following sections, we will investigate signal distortions that are caused by chromatic disper-
sion, and we will discuss how they can be mitigated by dispersion engineering and dispersion
compensation techniques.
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Dispersion-induced signal distortions

For a quantitative analysis of dispersion-induced signal distortion, let us again consider a time-
dependent signal propagating along an optical fiber in the fundamental LP(; mode, which, without
loss of generality, is assumed to be polarized along the z-direction. The electric field can then be
expressed as

E_ (r,t) = U(z,y) X A(z,1) x exp (j (wet — Bez)) (5.91)
lateral mode field slowly varying envelope optical carrier
=¥ (z,y) a(z,t) (5.92)

where ¥ (z,y) denotes the lateral profile of the fundamental mode’s E -component, and where
A (z,t) denotes the slowly varying complex envelope of the signal. The z- and t-dependence of the
signal is given by the complex mode amplitude a (z,t) and its Fourier transform @ (z,w),

Q(Z’t) = A(Z,t) exXp (J (wct - ﬁcz)) (593)
a(zw) = A(z,w — we) exp (—j Bez) (5.94)

A (z,t) is a “slowly varying envelope” in the sense that it changes much slower than the underlying
carrier signal, i.e., the bandwidth Aw of A(z,w) is much smaller that the carrier frequency,
Aw < w.. This approximation is often referred to as the slowly varying envelope approximation
(SVEA).

The propagation along the fiber is most conveniently described by a complex frequency-
dependent propagator exp (—j 8 (w) 2) in the frequency domain,

a(z,w) =a(0,w)exp(=jf(w)=2) (5.95)

For narrow-band optical spectra a (z,w) it is useful to expand S(w) in a Taylor series about the
carrier frequency w,

(W — we) (w — we)
2! 3!

Inserting Egs. (5.96) and (5.94) in Eq. (5.95]), we can derive an expression for the evolution of the
slowly varying envelope along z,

B(w) & Be + (w—we)BY + i B + ’ B ..., (5.96)

LA B B
A(z,t) = %/ A0,w)exp | —j | BMwz + Tsz + Tuﬁz +... ] |exp(jwt) dw

(5.97)

A time-domain equivalent of this relation can be found by considering 0A (z,t) /0z and by using
basic properties of the Fourier transformation. This leads to the basic propagation equation of a
signal inside a dispersive single-mode fiber,

3) 83A (27 t) _
ot3

c 2 c t

o 5 ce=0 (5.98)

1
— -4
T

The quantity ﬁgl) describes the group delay of the pulse envelope. In many cases, it is convenient
to eliminate the group delay from the equation by introducing a retarded time frame,

t'=t—pMz (5.99)
2=z (5.100)
Az )= A (z t— BE”Z) (5.101)
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which allows to express the partial derivatives of A (z,t) by those of A’ (z, t— ﬁél)z),

oA 9A  9A oA oA

= — = . 5.102
8 92 o’ o ot (5.102)
The quantity ﬁél) can hence be eliminated from Eq. 1'
0A’ (2, 1) i lﬁ@) 0?A (2, t) . 1 (3) PA (2',1) R — (5.103)
0z 27¢ ot’? 6 ¢ o3
Note that the primes are often omitted without further notice. If we neglect third- and higher-order
dispersion terms, 6£3) = ﬂ£4) =.--=0, Eq. (5.104) can be rewritten as
1 < 5§2)
A () = 2—/ A (O,w)exp | —j TMQZ’ exp (jwt') dw (5.104)
a — 0o

Propagation of a chirped Gaussian impulse

Let us now consider the propagation of a so-called chirped Gaussian impulse, which may serve as
a model for an optical data signal. A “chirped” Gaussian impulse is a waveform with a Gaussian
envelope and a time-dependent frequencyE] and can be written as

A(0,t) = A, exp <—(1_Ja)t2> : (5.105)

2
207}

where o denotes the so-called chirp parameterﬂ The instantaneous frequency of the complete
signal a (0,t) = A(0,t)exp (jw,t) can be defined by the rate at which the phase of the complex
signal changes,

w(t) = L arg {a(0,6)) = we + Lt (5.106)

T at 07
For a > 0, the leading edge of the signal has a lower frequency (“red shift”) than the trailing edge
(“blue shift”); for « < 0, the situation is reversed.

The frequency-domain representation of the chirped Gaussian impulse is obtained from the

Fourier transform of Eq. (5.105)),

A0,w) = A, (127:‘?2&) exp <—2(‘1’t2fja)> (5.107)
where the variance of the Gaussian spectrum is given by
o2 = % (5.109)
t

The corresponding time-bandwidth product at z = 0 is then given by

010, =V 1+ a? (5.110)

"to chirp = zirpen, zwitschern
8Note that in the last section, a was used for the attenuation coefficient of the fiber and do not confuse the two
quantities.
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It is minimal for an unchirped Gaussian impulse (o« = 0). Any chirp, regardless of sign, leads
to an increased spectral bandwidth (for the same temporal width) and hence increases the time-
bandwidth product.

Using Eq , neglecting third- and higher-order dispersion terms, and omitting the primes
denoting the retarded time frame, we obtain the complex signal envelope after a propagation
distance z,

_ Ao (1 — .] Oé) t2
where
@),
Q(z) =1+ (j+a) Pe 5 (5.112)

O

The pulse width oy (2) is then given by

0 (2) _ 822\ (822N
or (0) (Haa?(())) * o2 (0) (5.113)

For an impulse which is initially unchirped, o = 0 and the envelope broadens as

o) _ |1, (LZD)Q (5.114)

where the dispersion length Lp is given by

Lp= 20 (5.115)

2|

Lp denotes the distance after which the width of an initially unchirped Gaussian pulse has in-
creased by a factor of v/2.

For a chirped input pulse (« # 0 ), the pulse width may increase or decrease during propagation,
depending on the relative signs of 8> and «, see Fig.[5.24] If, e.g., B2 > 0, then the chromatic
dispersion coefficient C = —27C/A\? < 0, and the high-frequency (“blue”) components of the
signal spectrum are delayed with respect to the low-frequency (“red”) parts. An initial pulse
with a positive chirp parameter o > 0 and hence a red-shifted leading edge will further broaden
during propagation, whereas an initial pulse with a negative chirp parameter a < 0 will first be
compressed, before it also broadens for large propagation distances z.

Limitations of dispersive broadening on the data rate

Dispersive pulse broadening leads to limitations of the symbol rate that can be transmitted through
the optical channel. The spectral broadening depends strongly on the spectral width of the data
signal, which depends on the linewidth of the optical carrier and on the modulation.

In the case of narrowband sources, the linewidth of the carrier is much smaller than the
bandwidth of the modulation. The spectral width of the signal is hence solely defined by the
modulation speed, i.e., the duration of the signal pulses. If unchirped Gaussian impulses are
launched into a fiber of length L, the pulse width at the fiber end can be calculated from Eq. (5.114)),

(5.116)

FRIAN
Ot (0))

o2 (1) = o2 (0) + (
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Figure 5.24: Evolution of pulse width during propagation through a dispersive fiber. The broad-
ening factor gives the ratio of local pulse duration o (2) =T} and initial pulse duration o, (0) =Tj.
For 5 > 0, an initial pulse with a positive chirp parameter o > 0 will further broaden during prop-
agation, whereas an initial pulse with a negative chirp parameter o < 0 will first be compressed,
before it also broadens for large propagation distances z. (Figure adapted from [2]).

For very big initial pulse widths, o2 (0) — oo, the o7 (L) will be very large, too. The same is true
for very short initial pulses o2 (0) — 0: In this case, the bandwidth of the signal is large, hence
leading to a large spread of group velocities for the different spectral components. For a given fiber
length L, there is obviously an optimum input pulse width oy p¢ (0) which leads to a minimum
pulse width o, min (L) at the output,

Ot min (L) = 1 /2 é”‘L for oropt (0)=1/ §2)‘L. (5.117)

For a simple on-off-keying (OOK) data transmission, the minimum pulse width oy, (L) dictates
the minimum duration of a bit slot, Tinin ~ 20+ min, and the maximum achievable bit rate Bpax =
1/Tmin must obey the relation

1
Buast/ £2>‘L< . 5.118
a. 64 _2\/5 ( )

For narrowband sources, the maximum transmission bit rate Bpax hence decreases as 1/ VL,
1
VL
If the bandwidth is increased by a factor of 2, then the maximum duration of the output pulse
reduces by a factor of 2 as well, while the spectral bandwidth and hence the dispersion-induced

broadening increases. The length of the fiber must then be reduced by a factor of 4.

For broadband optical sources, the linewidth of the carrier o, is much larger than the band-
width of the modulation and hence dictates the overall spectral width of the signal. For sufficiently
short input pulse widths o2 (0), spectral broadening is solely dictated by o, ,

Buax X (5.119)

o (D)= ) + (80 Loue) = (60 Lowe) (5.120)
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Figure 5.25: Dispersion-related limitations of the symbol rate for narrowband (o) = Onm) and
broadband (o) = 1nm, o)y = 5nm) optical sources. For narrowband sources, Byax \%’ whereas

for broadband sources we find Bpayx < % When operating the fiber near its zero-dispersion wave-
length (D = 0), higher-order dispersion terms dominate, which also leads to distance-dependent
bandwidth limitations. (Figure adapted from [2]).

The maximum achievable bit rate Bpnax = 1/20¢ (L) is then given by

1
Bmaxﬁgz)l/o—w,c S 57 (5121)

i.e., the bit rate now scales inversely to the fiber length,

1

Bumax o 7 (5.122)

If the fiber is operated near its zero-dispersion wavelength, 6[(3) ~ 0 in Eq. and 69)
has to be taken into account to describe the dominant effects of dispersive pulse broadening. For
narrowband sources, a relation similar to Eq. can be derived for third-order dispersion [2].
Dispersion-induced bit-rate limitations for different cases are depicted in Fig.[5.25]

Dispersion engineering and dispersion compensation

Dispersion-induced limitations of fiber-optic transmission systems can be mitigated either by op-
erating close to the zero-dispersion wavelength of the fiber or by using a dispersion compensation
technique. Long-distance optical telecommunications is mostly performed at wavelengths near
1.55 pum, where silica fibers have minimum attenuation. For conventional single-mode fibers, ma-
terial dispersion M) amounts to approximately 2
negative and assumes values of Wy ~ —6 m . This leads to a total chromatic dispersion of the
waveguide of C\ ~ 16 —>— see Fig. - . In so-called dispersion-shifted fibers, the diameter
of the fiber core is decreased while the refractlve index contrast between the core and the cladding
region is increased. In this way, waveguide dispersion can be made more negative such that it
approximately compensates the material dispersion. When used in wavelength division multiplex-
ing (WDM) systems, dispersion shifted fibers can suffer from nonlinear interactions which cause
crosstalk between different wavelength channels. To avoid this, nonzero dispersion-shifted ﬁbers
are often used, where chromatic dispersion still has a small nonzero value of, e.g., C' =~ 2

see Fig.[5.26(b)

km nm’
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If the index contrast is further increased while the fiber core diameter is reduced, the total
chromatic dispersion can assume large negative values, Fig.|5.26|(c). Such fibers can, e.g., be used
for compensating the positive chromatic dispersion of standard singlemode fibers. To this end,
different optical fibers with opposite signs of ﬁgQ) are concatenated. For simplicity, we assume two
fiber sections of lengths L; and Lo and dispersion coefficients Bé? and B£22) . Applying Eq.
consecutively to both fiber sections, we find the pulse envelope at z = L = L1 + Lo,

1 [ ~ 1
A(L,t) = %/ A(0,w)exp <—j 3 (ﬁfl)Ll + ﬁ£22)L2> w2) exp (jwt) dw, (5.123)
Neglecting third-order dispersion, the original pulse shape will be reproduced for

BEAL + 8Ly =0 (5.124)
Cx1L1+Cr2Llo =0 (5.125)

As an example let us assume that the first fiber is a standard single-mode fiber of length L, =
100km and dispersion coefficient Cy; = 16:—L>— whereas the second fiber is a dispersion-

km nm
compensating fiber with negative dispersion coefficient Cy = —50—2— . Proper dispersion com-

km nm
pensation then requires the length of the second fiber to be chosen according to Lo = *%Ll =

32km.

5.6.3 Polarization-mode dispersion (PMD)

In ideal rotationally symmetric fibers, the fundamental mode is twofold degenerate and can exist
in two orthogonal polarization states. Real fibers, however, have small deviations from perfect
cylindrical symmetry, which lead to birefringence, i.e., the two orthogonal polarizations of the
fundamental mode have slightly different mode profiles and hence experience different group delays.
As a consequence, if an input pulse excites both polarizations, it will broaden during propagation
along the fiber. This phenomenon is referred to as polarization mode dispersion.

The birefringence varies along the fiber in a random fashion, which leads to random changes
of the polarization state. In addition, the polarization state will be different for different spectral
components of the signal. The analytical treatment of polarization mode dispersion is quite
complex and will not be derived here. For large fiber lengths L (typically several km), the variance
or of the differential group delays can be expressed as

or ~ D,VIL, (5.126)

where D, is the so-called PMD parameter (unit: ps/vkm). State-of-the-art fibers typically have
PMD parameters of less than 0.1 ps/\/la. Because of the v/L-dependence, PMD-induced broad-
ening is often small compared to chromatic disperision. It becomes relevant for long-reach high-
speed transmission systems with well-compensated chromatic dispersion. Several schemes have
been developed to compensate PMD, comprising optical and electrical techniques. More informa-
tion on the stochastic anlysis of PMD and on compensation techniques can be found in [2] and
the references therein.
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Figure 5.26: Dispersion characteristics of single-mode fibers. (a) Conventional single-mode fiber
(SMF) with n; = 1.450840, ny = 1.446918, a = 4.1 um and A = 0.27%. Wavelength of zero
chromatic dispersion C(A¢) = 0 is Ac = 1.325 um, cutoff at Aj;¢ = 1.142 um (b) Dispersion-
shifted fiber (DSF) with n; = 1.457893, no = 1.446918, ¢ = 2.3 um and A = 0.75 %. Wavelength of
zero chromatic dispersion C(A¢) = 0 is Ac = 1.523 um, cutoff at A\11¢ = 1.073 pm (c) Dispersion-
compensating fiber (DCF) with ny = 1.476754, ny = 1.446918, a = 1.5 um and A = 2%, cutoff at
)\11@ = 1.158 pHm
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Chapter 6

Waveguide-based devices

In this chapter, we will introduce basic devices that consist of optical waveguide as the fundamental
building blocks. To provide a basic understanding of light propagation within such systems, we
will first introduce the mode expansion method, which will later on be expanded to coupled-mode
theory. Based on these methods, we will consider the fundamental working principles of directional
couplers, multi-mode interference (MMI) devices, waveguide gratings, and optical loss and gain in
dielectric waveguides. Moreover, we will analyze fundamental principles of linear optical systems
by considering their scattering-matrix representations.

6.1 Propagation through dielectric waveguide structures

In the previous chapters, we have discussed methods to calculate the eigenmodes of dielectric
waveguide structures which are uniform in the direction of propagation. In this section, we will
expand our consideration to optical signals that propagate through dielectric waveguide structures
for which the refractive index varies along the propagation direction. In some cases, semi-analytical
approximations may be used that are based on the mode expansion method and coupled-mode
theory. In other cases, a numerical treatment will be necessary, that can, e.g., be based on a
finite-difference beam propagation algorithm.

6.1.1 Mode expansion method
Eigenmode expansion

In many cases of practical interest, dielectric waveguide structures consist of transverse index
distributions which are piecewise invariant in the propagation direction, see Fig.[6.1} For each of
these sections, an eigenmode expansion can be used to describe the field propagation,

B(r) = 3 om0 (36 0)2)+ 3 / P €y m)exp(~1 B, (0)2) dp (6.1)

Zam (w,y)exp (= Bu (p +Z/au w2 y) exp (=B (p) 2) dp
(6.2)

In these equations, &,,(z,y) and H,,(z,y) represent a discrete set of guided eigenmodes that are
labeled by an integer index m. Similarly, £, (7,y) and H, ,(z,y) correspond to the radiation
modes of the waveguide. The discrete mode index p denotes different families of radiation modes
(polarizations, symmetry properties), each of which comprises a continuous set of modes which
are denoted by the continuous parameter p.
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Figure 6.1: Many dielectric waveguide structures of practical interest are piecewise invariant
along the z-direction. For each of these sections, an eigenmode expansion according to Egs. (6.1)
and (6.2) can be used to describe the field propagation. (Figure adapted from [23])

The continuous nature of the radiation mode spectrum can be understood when recalling the
discussion of Section A radiation mode of a simple slab waveguide can be thought of as a
plane wave incident on the waveguide from the outside. The angle of propagation with respect to
the waveguide axis can be arbitrary, and the propagation constant 5 can hence assume any value
satisfying the relation 0 < |3| < nako, where, without loss of generality, no denotes the biggest
refractive index that can be found in the cladding region. The continuous mode parameter p can
then be chosen to be the transverse propagation constant of the plane wave. For a given value of
p, several such plane waves exist, which may, e.g., impinge from different directions, and they are
indexed by the integer u. For three-dimensional waveguides, calculating the radiation modes is
somewhat more involved [27], but the basic principles stay the same.

It can be shown that guided modes and radiation modes form a complete set. That means
that any arbitrary field distribution E(r), H(r) can be represented as a superposition of modes
according to Eqgs. and (6.2), given that E(r) and H(r) fulfill Maxwell’s equations.

For low index-contrast waveguides, waveguide modes have one dominant linearly polarized
transverse field component, which is denoted as ¥(z,y). In this case, mode field considerations
can usually be restricted to this component, leading to a simplified scalar mode expansion of the
dominant component @ (z,y, z) of a weakly guided field,

D (2,y,2) = Y am¥,,(x,y)e 1 Im* +Z/au (), . (w,y)e 1707 dp (6.3)
m uw P

Orthogonality relations

To calculate the coefficients a,, and a, (p) in Egs. (6.1) and (6.2)) from given field distributions
E(z,y,2 = z9) and H(z,y, 2 = 29), so-called orthogonality relations must be used. These relations
can be derived from Maxwell’s curl equations [22],

V x E(r,w) = —jwpoH(r,w) (6.4)
V x H(r,w) = jweE(r,w), (6.5)

where € = ¢ge,.. Let us now consider the E- and the H-fields of two different modes of the structure,
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which are denoted by subscripts v and p,

E, (r)=¢,(v,y)exp(—]jBuz), (6.6)
E,u,(r) :ﬂp(x7y> exp (_Jﬂuz)u (67)

We apply Eq. (6.4)) to mode v and dot-multiply the resulting relation with H*( ). Similarly, we
apply Eq. (6.5 . to mode 1 and dot-multiply the complex conjugate of resulting relatlon with E, (r).
Subtracting the two expressions, we obtain the relation

(H,-(VXE,) —E, - (VxH))) =jw (E,E; — pocH, H) (6.8)
The expression left-hand side can be simplified by using the identity
V- (E,xH;)=H; - (VxE)-E,  (VxH}). (6.9)

We now insert Eqgs. and (6.7) and apply the identity V x (®F) = & (V x F) + (V®) x F
where F denotes a vector field and @ a scalar function, see Section[A:2.2] Integrating over the
entire cross section, we obtain

//ZVt.(E,,XH)dxdy—J —Bu) // (E, xH}) -e.daxdy (6.10)

I

o [ (ee,g; - maett, 2;) dd, (6.11)

where V; = ex% + eya% denotes the nabla operator with respect to the transverse directions,
and where e;, e,, and e, are the unit vectors in x-, y-, and z-direction. It can be shown that the
integral I on the left-hand side vanishes, and we will make this fact plausible with a few arguments:
First, we restrict the integration to a finite region A in the transverse plane, and we use Gauss’
divergence theorem to transform the area integral into a line integral along the boundary dA of
the integration region,

/Vt-(él,xﬂZ)dxdy:/ (£, x M) -ndzdy, (6.12)
A 9A

where n is the outward unit normal vector of the boundary JA. If at least one of the modes v
and p is guided, the field strength decays exponentially as =2 + y? — oo, and the line integral
vanishes as the boundary of the integration area is shifted to infinity. If both modes are radiation
modes, the field strengths do not decay for z? + y? — oo, but the line integral still vanishes due
to the oscillatory behavior of the radiation modes along the boundary [22]. We may hence rewrite

Eq. as
(Bo = By) // (£, x M) -e.dady = *w// (e£,E), — poeH, ;) dzdy. (6.13)

Taking the complex conjugate of Eq. (6.13)), interchanging the indices v and u, and subtracting
the resulting relation from Eq. (6.13]) leads to

=) [l <) + (€ x2)] - esdady =0 (6.14)

For nondegenerate modes we have 3, # f,, and the integral on the left-hand side must vanish.
This yields the so-called orthogonality relations which, for guided modes v and pu, can be written
as

// )X H () + £ y) X Hy (2,9)) - €2 dady =Pudyy, (6.15)
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where ¢,,, denotes the Kronecker delta, and where P, represents the power that is associated with
the mode field,

= ;//O; Re {§N(x,y) X ﬂ;(af,y)} ‘e, dxdy. (6.16)

For radiation modes, the corresponding integral does not converge, and the power associated with
the mode fields cannot be directly calculated. The expression must then be interpreted as a power
spectral density of the radiation modes,

// £, () X Moy (,y) + E () X Hy o (2,9)) - €z dazdy =P 8,06 (0 — ).
(6.17)

where the mode fields are denoted by a continuous mode parameter p, and where § (p — p’) is the
Dirac delta function. The normalization coefficient P, , is then defined by the relation

1 o .
3 //_OO Re {§p1#(x,y) X ﬂp,_’#(m,y)} ce,dady =P, .0 (p—p') (6.18)

Note that guided modes and radiation modes are always orthogonal with respect to each other,

¢7 ) X Hy (z,y) + &5 (2,y) x H, (2,y)) -e.dzdy =0 (6.19)

In the case of degenerate guided modes with identical propagation constants, 8, = f,, it
cannot be concluded that the integral on the left-hand side of Eq. must vanish. We may
then still use linear combinations of the mode field solutions to construct a new set of mode fields
which is orthogonal in the sense of Eqs. (6.17), (6.18), or (6.19).

In many cases of practical interest, simplified orthogonality relations can be used. Maxwell’s
equations for guided modes, Eqs. and (3.69), are invariant with respect to the following
transformation

B— -8
Er — &,
Ey— &y
E. — =&, (6.20)
Hy = —Hy
Hy — —H,y
H, — H,

This transformation changes any solution of Maxwell’s equations into another solution thereof;
more precisely: It transforms the mode field of a forward propagating mode (propagation constant
B) into the corresponding backward-propagating mode (propagation constant —3) and vice versa.
Let us now consider two guided modes v and p that are neither identical (8, # §,,) nor are they
counterpropagating modes of the same propagation constant (8, # —f,) , and Eq. hence
reads

e <) + €560 < ) -esdndy =, (6.21)

We apply the transformations ([6.20)) to mode v and rewrite Eq. (6.15)),

// ) X Hy (2, y) — £, (2, y) x H,(z,y)) -e.dzdy =0, (6.22)

122



Adding Egs. (6.15) and (6.21)) and taking the real part of the resulting relation we obtain

%//_Oo Re {&,(z,y) x H)(x,y)} -e.dazdy =0 for B, # B, and B, # —B, (6.23)

This yields a simplified orthogonality relation for co-propagating modes,

1 e o)
5 | Relew x i@} e dudy =Py, (6:24)

Note that this orthogonality relation should only be applied to modes that are all propagating in
the same direction! Eq. cannot “distinguish” counter-propagating fields that belong to the
same mode (3, = —f,).

For modes of weakly guiding low-index-contrast waveguides, one transverse Cartesian field
component is usually much stronger than the other one. This allows to further simplify the
vectorial orthogonality relation according to Eq - For an £,-mode, we have |E_ | > |€,| >
€,| and |H,| > |[H.| > |2,], see Section The relation between the magnetic field and the
electric can then be approximated by

0
H =~ i &, (6.25)
wHo 1 85
B ay

Inserting Eq. (6.25) in Eq. (6.24) and replacing £, (z,y) by a scalar function ¥ (x,y), we obtain
the orthogonality relation for scalar mode fields of weakly guided low-index-contrast waveguides,

// iz, y)dody =Pudy,, (6.26)

2wpio

where P, is given by

2
= . 2
P, = Qwﬂo// ’ (z, y)‘ dxdy (6.27)

Note that the scalar orthogonality relation, Eq. (6.26)), is again only valid if the modes are
propagating in the same direction, since it was derived from Eq. (6.24). It cannot “distinguish”
between counter-propagating fields that belong to the same mode (8, = —5,,).

Example: Coupling efficiency to fundamental mode

To illustrate the use of the orthogonality relations, let us consider coupling of light into the front
facet of a waveguide, see Fig. Let E(z,y,0) and H(z,y,0) denote the launched electric and
magnetic fields at z = 0, “just behind” the waveguide facet, i.e., just after passing the dielectric
interface such that we do not need to take into account reflection from the waveguide facet. To
calculate the power that is coupled into the fundamental mode of the Waveguide we expand
E(z,y,0) and H(z, y,0) by the complete set of waveguide modes according to Eqs. (6.1) and (6.2),

Ble.1:0) = X a0 +Z/ £, () dp (6.29)
H(z,y,0 Zam (z,y +Z/aﬂ z,y) dp (6.29)

The total power of the incident field is calculated by integrating the real part of the complex
Poynting vector over the (x,y)-plane,

1 oo
Piot = 5 // Re {E(z,y,0) x H*(z,y,0)} e, dzdy (6.30)
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Figure 6.2: Coupling of a free-space beam to the facet of an integrated optical waveguide.

The power Prunq coupled into the fundamental mode depends on the mode coefficient ag and the
power associated with the mode field,

1 o0
Pruna = |aol? 5// Re {€,(z,y) x Hi(z,1)} - e. dady (6.31)

The amplitude ag of the fundamental mode can be calculated by using the orthogonality relations.
To this end, Eq. (6.28)) is cross-multiplied with Hg(x,y) and the result is added to the cross-product
of £5(x,y) and Eq.(6.29). We then integrate both sides of the resulting relation over the entire
(z,y)-plane and apply Eq. (6.15). After some manipulations we find the mode amplitude of the
fundamental mode,

0= g | (Be0) % M) + E55.0)  Hlw1,0) - ddy 6:32)

The power coupling efficiency 77 = Pruna/Piot is obtained by relating the power in the fundamental
mode to the total power,

2
‘ I (E(z,y,0) x H(z,y) + E5(z,y) x H(z,y,0)) -e.dzdy

2 [7 Re{E(z,y) x ﬂo(x,y)}~ezdxdy 2 17 Re{E(z,y,0) x H*(2,9,0)} -e.dady
(6.33)

’[7:

If a weakly guiding waveguide such as an optical fiber is illuminated with a linearly polarized
excitation field E(z,y,0) = @ (z,y,0) e,, we may express the Poynting vector in terms of @ (z, y, 0)
and use the simplified orthogonality relation, Eq. (6.26). The coupling efficiency can then be
rewritten as:

2
Prana ‘ffoo D(z,y,0) T5(x,y da:dy‘

= R : 6.34

T P ff Zo(z,y) dady - [ |8(z,y,0)>dzdy (6.34)

The numerator of this fraction corresponds to the overlap of the mode field ¥(z,y) and the
excitation field @ (x,y,0), whereas the denominator corresponds to the power contained in the
two fields. The more “similar” ¥ (z,y) and @ (x,y,0), the larger the coupling efficiency becomes.
Ideal coupling (n = 1) is achieved, if the excitation field has the same shape as the mode field.
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Figure 6.3: Multimode interference (MMTI) devices consist of a broad multimode waveguide (MMI
section), which is connected to several narrow feed waveguides. In the simplistic example shown
here, only a single input and a single output waveguide is used. (Figure adapted from [25])

6.2 Multimode interference couplers

Multimode interference (MMI) couplers are used to split optical signals inside planar lightwave
circuits. The central part of an MMI coupler is a broad multimode waveguide, connected to several
narrow feed waveguides, which are normally single-moded, see Fig.[6.3] The operation principle
of the devices is based on the so-called self-imaging effect, i.e., the fact that an input field is
reproduced in single and multiple images at periodic intervals along the propagation direction.

The operating principle of MMI couplers can be analyzed using the mode expansion method.
For simplicity, we assume low index-contrast waveguides which can be described in scalar approx-
imation. Let &(z,y,0) denote the excitation field which is launched from the input waveguides
into the multimode sections at z = 0. This field can be expanded into guided modes &, ,(x,y) of
the MMI section,

B(x,y,0 Z am¥ (6.35)

where the mode coefficients a,, are obtained from the orthogonality relation for scalar mode fields,

Eq. (720)

Ay, = 2meuo// (z,y,0) ¥ (z,y)dzdy. (6.36)

Once the mode amplitudes are known, the field inside the MMI section can be calculated at any
position z,

D(z,y,2 Zam (x,y) exp (—j Bm2) - (6.37)

The evolution of the field @(x,y, z) for z > 0 hence depends on the modal propagation constants
Bm. We use the effective-index method to find an approximation for 3,,, see section [£.3} The MMI
section is represented by a broad multimode slab waveguide of width w and refractive indices n¢1
in the core and neo in the cladding, see Fig. The quantity ni. denotes the effective index of
the layer stack in the core region of the MMI section; n.o corresponds to the effective index in the
cladding region. The transverse phase constants of the various guided modes are then given by

w
Uy, = 5””21% - 32, (6.38)
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For modes far from cut-off, the transverse phase constants can be approximated by

umz(m+1)g

This leads to an expression for the difference between the propagation constant 5y of the funda-
mental mode and that of higher-order modes,

(6.39)

m(m+2)7m
— By = ———, A
Bo— B 3L (6.40)
where the beat length L, is defined to be:
dnq w?
L, = 6.41
) (6.41)
The field inside the MMI section can hence be written as
m+2)mT .
&(z,y, 2 Zam (z,y) exp (J (3LW)Z> exp (—j Boz) (6.42)

From this relation, we can derive some interesting properties of the MMI. For z = 6L, the initial
field is reproduced,

&(z,y,6L,) Zam (x,y)exp(jm (m+2)-2m)exp(—jBo-6Lx)

= sb(x,y,t)) e 1000k, (6.43)

and the same applies to z = 12L,, 18L, ..., i.e., the initial image is reproduced repeatedly along
the direction of propagation. To derive the field configuration for z = 3L, we have to make use of
the fact that waveguide modes with even mode index m are symmetric with respect to the center
line of the MMI section (x = 0), whereas odd mode indices belong to asymmetric modes,

U (—2,y) = v, (x,y) for m even (6.44)
=L ~w, (z,y) formodd '

As a consequence, the initial field is mirrored about the symmetry plane z = 0 of the MMI,

b(2,y,3Lr) = (—,y,0) e o 3hn (6.45)

see Fig. In a similar way, we can show that at z = Sg” two images are formed, one of which
is mirrored about the symmetry plane z = 0 and delayed by 7/2 with respect to the other,

3L, 1—j 14 . x
# (0025 ) = [F 320000 + L 000 i (6.46)
see Fig. [6.4L More generally, one can show that N images are found after propagation distances
3pL,
=—, 6.47
=L (6.47)

where p and N are integers without a common divider. An in-depth analysis of MMI couplers
can be found in [3] and the references therein. Note that the analytical treatment shown here
is usually used for a first coarse design of MMI devices. Numerical methods are then needed to
fine-tune the device geometry.

For light input at the center of the MMI section, the intensity distributions are depicted in
Fig. After a length of 3L,/8, the original light input at the center of the MMI is split in
8 equal images. If output waveguides are connected to the multimode section at the respective
positions, the device can be used as an 1-to-8 power splitter. Note that the intensity pattern
shown in Fig.|6.5| cannot be explained by Eq. : If light is input at the center of the MMI
section, only even waveguide modes are excited. This case is not covered by Eq. .
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Figure 6.4: Image formation within an MMI section: For general excitation off the waveguide
center, the transverse image repeats after 6L, a mirrored version occurs after 3L, and two copies
of the input are obtained after 3L, /2. (Figure adapted from [4])
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Figure 6.5: Intensity distribution for light input at the center of the MMI section. (a) Since
&(z,y,0) = P(—x,y,0), the initial image in the (z,y)-plane is already repeated after a propagation
length of 3L, rather than 6L, as suggested by Eq. (6.43). (b) After a length of 3L, /8, light input
at the center of the MMI is split in 8 equal images. By connecting output waveguides to the

multimode section at the respective positions, the device can be used as an 1-to-8 power splitter
(Figure adapted from [23]).
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Figure 6.6: Basic principle of a directional coupler: Closely spaced waveguides are running in
parallel to each other such that the evanescent tails of individual eigenmodes interact with the
neighboring waveguide. This leads to coupling of the guided modes, and the power oscillates
back and forth between the waveguides. (a) Optical intensity distribution (blue lines) at various
positions along the propagation direction z for the case where light is launched into the left
waveguide only; (b) Corresponding color-coded intensity distribution in the (x, y)-plane; (c) Power
in the fundamental mode of the left (“1, Mode 0”) and the right (“2, Mode 0”) waveguide.

6.3 Directional couplers

A directional coupler consists of two closely spaced waveguides running in parallel to each other
such that the evanescent tails of the first waveguide’s eigenmodes interact with the second wave-
guide, see Fig.[6.6] As a consequence, the modes of the two waveguides are coupled, and the optical
power is oscillating back and forth between the waveguides with a typical beat length L. In this
section, we will first introduce the general idea of mode coupling in parallel waveguides, and then
use this formalism to quantitatively analyze directional couplers.

6.3.1 Mode coupling in parallel waveguides

In isolated z-independent waveguides, all eigenmodes are orthogonal and propagate independently
of each other. The complete field within the waveguide can then be written as a linear superposition
of eigenmodes with constant amplitudes. This idea can be transferred to the situation where two
closely spaced waveguides are coupled by evanescent fields. The total dielectric profile € (x,y) of
the two waveguides can be written as the sum of a background dielectric profile €, (z,y) and local
perturbations Ae; (z,y) and Aes (z,y) that correspond to the cores of the first and the second
waveguide, see Fig.[6.7]

€(x,y) = & (z,y) + Aey (2,y) + Aea (2,y) (6.48)

Let us now assume that the presence of the second waveguide represents only a small perturbation
to the mode propagation in the first waveguide and vice versa. In this case, the electromagnetic
fields may still be approximated by the modes of the two individual waveguide structures, but
the mode amplitudes will change during propagation due to the coupling. This is expressed by z-
dependent mode amplitudes A (z). Assuming both waveguides to be single-moded and neglecting
radiation modes, we may restrict our consideration to the two fundamental modes of the two
waveguides, which shall be denoted by subscripts 1 and 2,
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€(z,y) = & (z,y) + Aey (z,y) + Aea (2, 9)

Figure 6.7: Basic principle of the perturbation approach that is used for the analysis of co-
directional coupling: The total dielectric profile € (x,y) of the two waveguides is represented by a
sum of the background dielectric profile €, (z,y) and local perturbations Ae; (z,y) and Aes (z,y)
that correspond to the cores of the two waveguides. (Figure adapted from [5])

E(z,y,2 ZA (z,y)e IPv= (6.49)

H(z,y,z ZA (z,y)e IPv? (6.50)

In the following, we use the orthogonality relation, Eq. to project out the changes of the
mode amplitudes dA, /9z during propagation along z, i.e., we assume that the mode field pairs £,
H, and &£,, H, are orthogonal to each other. This needs some explanation: Recall that Eq.
refers to two guided modes which belong to the same waveguide and which are indicated by
subscripts 1 and 2. For these modes, orthogonality was proven in Section[6.1.1] In contrast to
that, the mode field pairs £, H; and &,, H, in Egs. and refer to the fundamental
modes of two distinct waveguides, which are denoted by 1 and 2. In a strict sense, they are not
orthogonal. However, we may assume that Eq. still holds approximately for £, 4, and &,,
Ho, . To understand this, let us assume that we expand the fundamental mode fields £,, H, of
waveguide 2 by mode fields of waveguide 1. This expansion would mainly consist of high-order
guided modes and radiation modes of waveguide 1, since the low-order guided modes of waveguide
1 are close to zero at the position of waveguide 2 and can hence not contribute to the expansion.
As a consequence, nearly all modes of the expansion are therefore orthogonal to the fundamental
guided mode of waveguide 1, and this also applies to the entire expansion, such that Eq. is
approximately fulfilled. A more rigorous analysis taking into account the imperfect orthogonality
of the mode field pairs £;, H; and &,, H, can be found in [23].

The superposition of the fields according to Egs. and should satisfy Maxwell’s
equations for the total dielectric profile,

V x E(z,y,2) = —jwpoH(z,y, 2), (6.51)
V E(xv Y, Z) = .] w (6 (Z‘, y) + Aey (Z‘, Y, Z) + A€2 (.13, Y, Z))E(ﬂf, Y, Z) (652)

Inserting Eq. (6.49) and (6.50) in Eq.(6.51) and using the identity V x (PF) = & (V x F) +
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(V@ x F), we obtain

& DA
Z { (VxE, exp(—jBuz)) + (,;Z” x £, exp (—jﬁuz)} (6.53)

v=1
Z—JWMOZ vH, exp (=]jBu2),

where we have omitted the arguments z, y, and z for the sake of readability. Likewise, by inserting
Eq. (6.49) and (6.50) in Eq. (6.52), we obtain a similar relation for the magnetic field,

2

> {Ay (VxH,exp(—jBuz)) + %ez x H, exp (-] ﬁyz)} (6.54)

v=1

2
=jw (e + Aeg + Aey) Z vE,exp (—jBuz)

Egs. (6.53) and (6.54) can be simplified by making use of the fact that £, exp(—jf,z) and
H, exp (—jB,z) must fulfill Maxwell’s equations for the respective waveguide,

V x (€, exp(—jBuz)) = —jwo (H, exp (—jBu2)), (6.55)
Vx (H,exp(—jBuz)) =jw (e + Ae,) (€, exp(—jBu2)). (6.56)
This leads to the relations
2
aA”ez xE,exp(—jpB,z)=0 (6.57)
~ 0z
L 9A
(;; e. xH, exp(—jBuz) =jw(AeA € exp (—]fi12) + AetAyEyexp (—jPaz)) (6.58)

Dot-mutliplying Eq. (6.57) with ] (z,y) and Eq. (6.58) with £7(z, y) and subtracting the resulting
relations, we obtain

S (e, x£,) MY — (o x H,) - E5]exp (1 67) (659

= —jw(AeA & exp (—]fi12) + Ae1AyEy exp (—j faz))

We now use the property (a x b)-c =a- (b x c) of the scalar triple products (German: ’Spatpro-
dukt’) on the left-hand side of Eq. (6.59)), integrate over the entire cross (z,y)-plane, and use the
orthogonality relation, Eq. (6.15)). This leads to

oA
731;2) - e (// Aex Ay €7 dady, + / AerAyE,E} exp (— (52_51)2))(1“%
(6.60)

The electric field £, (z, y) of the first mode is much stronger in the core region of the first waveguide
(Ae; # 0) than at the position of the second waveguide (Aey # 0) and vice versa. The first
expression on the right-hand side of Eq. can therefore often be neglected with respect to the
second one provided that the index perturbations Ae; and Aey are comparable and that the two
waveguide modes have similar shapes. The evolution of A; (z) is hence governed by the relation

aA _ 47)1/ Aes AyE,E5 exp (—j (B2 — 1) ) dzdy, (6.61)
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A similar derivation can be performed for the second waveguide, and we obtain a set of two
coupled-mode equations for the interaction of the two waveguides,

04, (2)

9z —jR124, (2) eIV, (6.62)
aA . —j — z
7822(2) = —jkaid, (2)e j(B1—B2) , (6.63)

where the coupling coefficients x,,, are given by

w o N
i = [ Be @) v anay (6.64)

The quantity P, is used for power-normalization of the numerically calculated mode fields &, (z,y),

P#:;//_O;Re{gﬂ(x,y) xﬂ;(x,y)}-ezdxdy. (6.65)

Note that P, > 0 in Eq. corresponds to a mode field that is propagating in positive
z—direction, whereas P, < 0 represents propagation in the negative z—direction. In this defi-
nition, the mode amplitudes A, (z) are dimensionless quantities, and the physical power P, (2)
carried by a waveguide mode of amplitude A4, (z) along the propagation direction is given by

P, (2) = |4, 2)]* P, (6.66)

where, again, P, (z) > 0 (P, (z) < 0) if power is flowing in positive (negative) z—direction. It is
useful to normalize all mode fields to the same power P = P; = P5. Note that we can always
define the phases of the mode fields £, (x, y) and £, (x, y) such both k12 and ko7 are real quantities.

6.3.2 Analysis of directional couplers
Coupling of identical waveguides

We will now use these equations to describe the working principle of a directional coupler, Fig.[6.6]
For simplicity, let us assume that both waveguides have the same cross section and that the mode
fields are normalized to the same power, i.e., 81 = f2 = 8 and k12 = k21 = k. The coupled-mode
equations can then be written as

04, (2) .
812 = —jrA, (2) (6.67)
04, (2) .
52 = —jrA, (2) (6.68)
Eliminating one of the two amplitudes, we obtain identical equations for both amplitudes,
0%’A
75;’2(2) =—Kk*A,(2), v=12 (6.69)

If power is coupled only into the first waveguide at z = 0, A;(0) = Ap and A,(0) = 0, the evolution
of the mode amplitudes is given by

A (z) = Agcos (kz), (6.70)
Ay(z) = —jApsin (k2), (6.71)

i.e., the power is oscillating back and forth between the waveguides, where the phase of the
second waveguide mode is lagging behind that of the first driving mode by 7/2. This situation
is comparable to that of coupled mechanical pendula with identical resonance frequencies, where
power is oscillating back an forth between the two mechanical systems, and where a 7/2 phase
shift exists between the oscillations of the two pendula. This can be visualized by an animation
linked under [

Uhttp://www.theorphys.science.ru.nl/people/fasolino/sub_java/pendula/laboratory-en.shtml
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Figure 6.8: Power oscillations in directional couplers for different ratios é/x of propagation constant
mismatch and coupling strength. (a) Zero propagation constant mismatch leads to a complete
transfer of power from one waveguide to the other. (b, ¢) With increasing propagation constant
mismatch, the power transfer between the waveguides becomes smaller. This corresponds to the
mechanical analogon of coupled pendula that have different resonance frequencies. (Figure adapted

from [3])

Coupling of waveguides with different cross sections

The solution of the coupled-mode equations can be generalized to the case of coupled waveguides
that differ in shape and hence propagation constant. For given initial conditions A, (0) and A,(0),

the general solution of Egs. (6.62]) and (6.63)) can be written as [5]
B L0 . K12 . j oz
A (z) = || cos(oz) —j—=sin(oz) | A;(0) —j —sin (cz) A5(0)| € °%, (6.72)
o o
0 4
Ay (z) = {—j % sin (0z) A;(0) + (cos (0z)+] p sin (az)) AQ(O)} o107 (6.73)

where the auxiliary quantities § and o are given by

0? = K? + 6%, (6.74)

5 B — 52. (6.75)
2
The quantity § corresponds to the mismatch of the propagation constants. The degree to which
power is transferred between the waveguides depends strongly on the ratio d/k of propagation
constant mismatch and coupling strength, see Fig.[6.8] Zero propagation constant mismatch leads
to a complete transfer of power from one waveguide to the other, whereas for nonzero mismatch,
only a fraction of the power is exchanged.
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Example: 3dB-splitter based on coupled waveguides

For a 3 dB-coupler, we want equal power levels in both waveguides. For simplicity let us again
assume that both waveguides have the same cross section and that the mode ﬁelds are normalized
to the same power, P = Py = Py, 1 = B2 = 3 and k12 = k21 = k. From Egs. (6.66), (6.70), and
we find

Pi(z) = |A1(2)> P = |Ao|> P cos (r2) (6.76)
Py(2) = |Ag(2)]> P = |Ao|? Psin (r2) (6.77)

The two power levels are equal for kz = 7/4, and the corresponding length of the directional
coupler then given by

s
L3gp = —. .
3dB = o (6.78)

6.4 Waveguide gratings

In the last section we have seen that co-propagating guided modes of two waveguides can be
coupled by bringing the corresponding waveguides in close proximity to each other. The presence
of one waveguide can then be treated as a small perturbation of the other waveguide’s index
profile. In this section, we will extend this idea to the case of mode coupling within a single
waveguide which is subject to perturbations of the dielectric profile. We will first introduce the
general idea of mode coupling by refractive index perturbations, and then focus on periodic index
perturbations which form the basis of waveguide gratings. Such structures are, e.g., used in
fiber Bragg gratings, grating-assisted fiber-chip couplers, distributed feedback (DFB) lasers or
distributed Bragg reflector (DBR) lasers.

6.4.1 Perturbation theory and mode coupling

As in Section [6.3.1 we assume a dielectric structure which deviates only slightly from an ideal
waveguide. The deviation is treated as a small perturbation Ae (z,y, z) of a z-independent index
profile € (z,y),

e (2,y,2) = €(x,y) + Ae(z,y, 2) (6.79)

For “small” perturbations, the field can still be approximated by the modes of the unperturbed
waveguide structure, but mode amplitudes will change during propagation due to coupling. This
is expressed by z-dependent mode amplitudes A, (z), and the field expansion for the perturbed
waveguide can be written as

B2) = S04 (£, exp (159 o)
+y / A (02) €y 5) exp (1 B (0) 2) A,

H(w.y,z ZAH (2) H, (2, y) exp (=] Bv2) (6.81)
+Z/pAu (p,2) M, (z,y)exp (=] B (p) z) dp,

where A, (2) (4, (p, 2)) denote the guided (radiation) mode amplitudes of the waveguide. Clearly,
the evolution of the various mode amplitudes depends strongly on the waveguide geometry € (x, y)
and the perturbation Ae (x,y, z). This shall now be analyzed in more detail.
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We start again from Maxwell’s equations for the perturbed waveguide,

V x E(z,y,2) = —jwpoH(x, y, 2), (6.82)
V x H(z,y,2) = jw (e (z,y) + Ae (2,9, 2)) E(x,y, 2). (6.83)

For the sake of simplicity, let us consider only guided modes in this derivation,
E(z,y,2 Z A, (x,y)exp (—]jPBuz) (6.84)

H(z,y,z Z A, (z,y)exp (—jBuz) (6.85)

where €, (z,y) and H,(z,y) denote the eigenmode fields of the unperturbed waveguide structure,
fulfilling Maxwell’s equations for the unperturbed index profile € (z, y),

Vx (€, (x,y)exp(—jBuz)) = —jwuo (K, (z,y) exp (—jBuz)), (6.86)
V x (H,(z,y)exp (—jBuz)) = jwe(x,y) (€, (z,y) exp (—jBu2)). (6.87)

As in Section [6.3.1} we insert Eq. (6.84) and (6.85) in Eq. (6.82)) and use the identity V x (PF) =
@ (V xF)+ (VP x F). This yields

> [AVV (x€, exp (—]Buz)) + %ez x &, exp (=] /J’uz)} (6.88)

= —jwpo ZAV sexp (—jBy2),

174

where we have omitted the arguments x, y, and z for the sake of readibility. Likewise, by inserting
Eq. (6.84) and (6.85) in Eq. (6.83), we obtain a similar relation for the magnetic field,

5 4, (7 x ty o0 (35,20 + 854; < H, exp (~ ] m)} (6.89)

v

(e + Ae) Z Lexp (—jBuz)

Making use of Eqs. (6.86) and , we can simplify Eqs. (6.88) and (6.89),
04, (»)

02 e, x&, (‘T7 y) exp (_.] Buz) =0 (6.90)
94, () :
> 5, o < Moz y)exp(=jh2) —JWAﬁzA & (z,y)exp(—jpuz). (6.91)

Dot-mutliplying Eq. (6.91) with #£; (2, y) and Eq. (6.91) with £7 (x,y) and subtracting the resulting
relations, we obtain

A
Z 88;u [(ez xE&,) ﬂ; —(e: xH,) §Z] exp(—jpuz) = —ijeZAU§V exp (—jBy2)
(6.92)

We again use the property (a x b)-c =a- (b x ¢) of the scalar triple products on the left hand
side of Eq. (6.92), integrate over the entire cross (z,y)-plane, and use the orthogonality relation,
Eq. (6.15). This leads to
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0A,, (2) jw 0 .
i U AR E LEX —i(By—Bu)=
0z 4P, v //,oo Aeg, -, dadyd, e " (6.93)
which can be rewritten in the more familiar form of a mode-coupling equation,

0A,, (2) ) BBz
52 :—JZKVW (2) A, (z) e I Bv=Bu)z, (6.94)

In this relation, the coupling coefficients ,,, (z) are given by

Ky = / Ae(x,y,2) €, (x,y) - €5 (x,y) dady, (6.95)
4P, J) -

and P, is used for power-normalization of the numerically calculated mode fields £, (z,y) and
H, (z,y),
Ly

73#:;//_O;Re{f,’#(gc,y)XH;(x,y)}-ezdxdy. (6.96)

Eq. can be interpreted in an intuitive way: The perturbation Ae(x,y, 2) is “weighted” by
the electric fields of the mode. Perturbations are hence more “effective” if they occur in a region
where the electric fields are strong. Note that P, > 0 in Eq. corresponds to a mode field
that is propagating in positive z—direction, whereas P,, < 0 represents propagation in the negative
z—direction. As before, the mode amplitudes A, (z) are dimensionless quantities, and the physical
power P, () carried by a waveguide mode of amplitude A, (2) along the propagation direction is
given by

P.(2) = |4, )] Py, (6.97)

where P, (z) > 0 (P, (z) < 0) if power is flowing in positive (negative) z—direction. If all mode
fields are normalized to the same power P; = Py = P3 = ... , and if Ac is real (no loss or gain),
then the coupling coeflicients x,, obey the following symmetry relations:

%
*

K for co-propagating modes

—ky, f t ti d
Ko = { K or counterpropagating modes (6.98)

Note that we can always adjust the phases of the mode fields £, (z,y) and £, (z,y) such that a
certain coupling coefficient x,,, becomes real.

6.4.2 Mode coupling by periodic perturbations

Let us now consider perturbations of the refractive index profile Ae (z,y, z) that are periodic in
z-direction with periodicity A, Fig.[6.9] We can expand the z-dependence in a Fourier series

Ae(z,y,2) = Y Aeq(w,y)e 1957, (6.99)

g=—00

where the periodicity is given by the “spatial wavenumber”

K== (6.100)
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Figure 6.9: A waveguide grating consists of a periodic perturbation Ae (z,y,z) of an optical
waveguide with permittivity e (z,y) which is otherwise homogenous along the propagation direction
(z-direction). Two guided modes with propagation constants 5, and 3, are coupled by the grating
if the difference of the propagation constants corresponds to a spatial frequency component of the
index perturbation. (Figure adapted from [5])

and where the coeflicients Ae, (z,y) define the shape of the grating elements. The coupled mode
equations, Eq. (6.94), can then be written as

0A, () .
M — ] - Bu_5u+ K)Z
—5, = JEV Eq Kuvg Ay (2) e “ (6.101)
where
w e N
o = o | Aerlen) € Elp)ddy (6.102)
12 —0o0

The right-hand side of Eq. contains a sum over all contributions that originate from the
interaction of the waveguide modes with the spatial harmonic components of the grating. To solve
the relation, we need to integrate over z. For 8, — 8, + ¢K # 0, we will see periodic oscillations
of the right-hand side as a function of z, which will not contribute significantly to the integral.
Significant contributions to the change of the mode amplitudes A, (z) originate therefore only
from combinations of §,, 8, and ¢gK for which

By = Bu +qK ~0. (6.103)

In other words: Two modes with propagation constants 3, and 3, are coupled by the spatial
frequency component ¢K that corresponds to the difference 5, — 3,..

Example 1: Fiber-chip-coupling via gratings

A periodic grating etched into the surface of an integrated optical waveguide can be used to couple
guided modes to radiation modes and hence to couple light into and out of the waveguide, see
Figure In this case, a guided mode with propagation constant fguia shall be coupled to a
radiation mode of propagation constant Sp.q. If the radiated field propagates under an angle
© with respect to the vertical direction, the propagation constants along the z-direction can be
expressed as

6rad = ngko sin © (6104)
Bguid = Neko (6.105)
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(a) (b)

Figure 6.10:  Grating assisted fiber-chip coupling (a) Principle of coupling guided modes to
radiation modes by a periodic perturbation: The angle ® under which the field is radiated with
respect to the vertical direction is dictated by the fact that the spatial frequency K = 2xw/A of
the grating must account for the difference Bguia — Braa of the guided and the radiation mode’s
propagation constant along the z-direction. (Figure adapted from [5]) (b) Schematic of a fiber-
chip coupler that connects a standard single-mode fiber (SMF) to a grating that is etched into the
surface of a silicon-on-insulator waveguide. (Figure adapted from http://www.helios-project.eu))

Using Eq. (6.103) and assuming a first-order grating (|¢| = 1), we can calculate the fundamental
spatial wavenumber and the period of the grating structure,

K = ﬂguid - /Brad (6106)
A

_A I e -].
Ne — N3 Sin @ (6.107)

For a typical case of a silicon-on-insulator (SOI) waveguide with effective refractive index n. = 2.5
operated at a wavelength of A = 1.55 um and a targeted propagation angle © = 10°, we obtain a
grating period of 670 nm. In certain cases, diffraction gratings can radiate light in more directions
that correspond to different so-called diffraction orders |g| of the grating, Fig.[6.11]

kn, p kny

Figure 6.11: Graphical illustration of the grating equation [6.103|for 3, = Bguia and B, = Braq for
(a) g = —1 and (b) ¢ = —2. Waves radiated in the directions that correspond to |g| =1 (|¢| = 2)
are referred to as first- and second-order diffractions. (Figure adapted from [5])
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Figure 6.12: Graphical illustration of grating assisted mode conversion. (a) Conversion of the
fundamental transverse-electric mode (“TE0”) to the next higher-order TE mode (“TE1”) requires
a grating with a small wavenumber (big period), that just accounts for the difference of the prop-
agation constants. (b) Coupling of a forward-propagating TE mode to its backward propagating
counterpart. The wavenumber of the grating must be equal to twice the propagation constant of
the mode. (Figure adapted from [5])

Example 2: Grating-assisted mode conversion

Waveguide gratings are also useful to convert one guided mode into a different guided mode.
The grating must then be designed such that the fundamental spatial wavenumber matches the
difference of the propagation constant of the two modes. An example is sketched as a wave vector
diagram in Fig.[6.12[(a). To couple two co-propagating modes, a sufficiently large grating period
(small K) is needed. Higher-order harmonics (¢ = 2,3.,...) of the grating might then lead to
losses by coupling the guided modes to radiation modes.

Example 3: Contra-directional coupling

In the same way, we can couple two counter-propagating modes of the same waveguide by a
sufficiently large spatial wavenumber K, see wavevector diagram in Fig.|6.12{(b). We will now
analyze this case in more detail. For simplicity, let us consider two counter-propagating modes with
“identical” field distributions and hence propagation constants of equal magnitude but opposite
sign,

Br=—-Bi=p (6.108)
Pr=-P (6.109)
Bpl = —Kip = K (6.110)

The two counter-propagating modes are most efficiently coupled by a grating with a fundamental
wavenumber K ~ 283 or A ~ n/8. We assume further that the perturbation Ae (x,y, z) has zero
mean value along z, i.e., the zero-order Fourier coefficient vanishes, Aeg (z,y) = 0. Considering
only the dominant contributions, i.e., the expressions that do not vary rapidly with z on the
left-hand side of Eq. , we can write down the coupled-mode equations for this case,

34@;@) = KA, (z)e 12Kz, (6.111)
R N B (6.112)

where the subscript { () denotes the mode propagating to the left (right), Fig. The coupling
coefficient k is related to the first harmonic Ae; (x, y) of the periodic dielectric profile perturbation,

o // Ay (2,y) & (2,y) - € (x,y) dzd . (6.113)
47)# oo
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Figure 6.13: Coupling of counterpropagating modes in a waveguide Bragg grating. A, (z) (4, (2))
denotes the local mode amplitude propagating to the right (left). Strong coupling of modes with
propagation constants £/ is obtained for A ~ 7/8. (Figure adapted from [3])

Defining the so-called detuning parameter,
K
0=p0—- 5 (6.114)

we can state the coupled-mode equations for contra-directional coupling in the following form:

‘M&i;z) = jKA, (z) e 122 (6.115)
78452(2) = —jKA, (2)el¥= (6.116)

In many cases of practical interest, light is coupled to the grating from one side only, A, (z = 0) =
Ap and A4, (z = L) = 0. The general solution of Egs. (6.115) and (6.116) is then given by [5]

ocosh (o (z— L)) —jdsinh (o (L — 2))

A =A 11
4, (z) 0 ocosh (oL) 4 josinh (oL) (6.117)
jrsinh (o (z — L))
A =A 11
4 (z) %5 cosh (oL) + jdsinh (o L) (6.118)
where the auxiliary parameter o is defined by
o? =K% - 5% (6.119)

The power levels of the forward and backward propagating modes within the waveguide grating are
depicted in Fig.[6.14] for operation at the Bragg frequency (6 = 0) and for a normalized detuning
of §/k =1.2. From Eq. (6.117)), we can derive the peak reflectance for zero detuning (§ = 0):

A 2
- 'AZ((?)|2 = tanh? (kL) (6.120)

T

The reflectance asymptotically approaches 1 as the grating length increases. Reflection and trans-
mission spectra of waveguide gratings with different lengths and coupling strengths are depicted
in Fig.[6.15] Note that the horizontal axis (detuning) is normalized by the coupling coefficient
k. To obtain a narrow-band reflection with a peak reflection factor close to 1, we hence need a
long grating (kL large) with a small coupling factor k. Such gratings can, e.g., be realized by UV
exposure of optical fibers, which creates a very small refractive index perturbation (small k) over
a length of centimeters.
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Figure 6.14: Normalized power distributions of modes propagating to the right (|A,. (2)|?) and to
the left (|4, (z)|%). Light with unity amplitude is launched to the grating from the right, A, (0) = 1,
A, (L) = 0. The power transmittance and reflectance are given by T = |A, (L)|* /|4, (0)|* and

I' =4, (0)]* /|4, (0)|°, respectively. (a) Bragg grating operated at the Bragg frequency with zero
detuning (6 = 0); (b) Normalized detuning of §/x = 1.2. (Figure adapted from [3])

(a) 1l == T T Cami) T T T 7o~ T ==
o
=)
S 05fF - - 4
o
=
0
-5 5
(b) 1T
kL=075n
?E . .
~ 05F -
o
=
LR —"
8/k
(c) Iz N_ n T ,l\ AN AT St L
kL=m -~ v\ \ - 5
- N ! HAY Tl
U] TR SRR E
X \ .
= I
- \ : S e
i Wi e i
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 6.15: Reflectance and transmittance of different Bragg gratings as a function of normalized
detuning ¢/ from the Bragg frequency. (a) Weak coupling, L = 0.57; (b) Medium coupling,
kL = 0.757; (c) Strong coupling, KL = m. Note that the horizontal axis (detuning) is normalized
by the coupling coefficient . To obtain a narrow-band reflection with a peak reflection factor close
to 1, we hence need a long grating (kL large) with a small coupling factor k. (Figure adapted

from [3])
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Figure 6.16: Mode field distribution of the fundamental £(Y-mode (quasi-TE mode) in a silicon-
on-insulator (SOI) waveguide. If silicon is affected by absorption loss, the complex refractive index
has a nonzero imaginary part in the core region. This can be interpreted as a perturbation of the
refractive index profile of an otherwise real refractive index profile.

6.5 Material gain and absorption in optical waveguides

Material absorption and gain are common phenomena in optical waveguides. Gain or loss is
represented by the imaginary part n; of the complex refractive index n. However, in many cases of
practical interest, n; varies considerably over the cross section of the waveguide. In semiconductor
optical amplifiers, some parts of the waveguide cross section might e.g. exhibit optical gain,
whereas others might be lossy. It is intuitively clear that material gain or loss is more significant
if it occurs in a region of high optical intensity. In this section we will quantitatively analyze the
relation between modal loss or gain and the underlying material properties.

Absorption loss

As an example, let us consider a silicon-on-insulator (SOI) waveguide for which the waveguide
core is affected by absorption loss, see Fig.[6.16] for a sketch of the mode field. As discussed
in Section , the complex refractive index of a material depends generally on contributions
from both bound and free charges. These contributions can in principle be taken into account by
appropriate Sellmeier equations. However, in many cases of practical interest, empirical equations
are used to describe the effect of free carriers. For silicon, the contribution of free carriers to the
real and the imaginary part of the complex refractive index at 1550 nm can be modeled by [?]

N, Ny \"®
An, = — <8.8 X 10—"Lcm—_3 +8.5 <Cm_3) ) x 10718, (6.121)
N, N,
Aoy, = 2kgAn; = (8.5cm3 + 6.Ocmh3> x 107 8¥em 1, (6.122)

The influence of free-carrier absorption on the waveguide mode can be estimated by applying the
coupled-mode theory. Assume that only the core of the SOI waveguide is affected by material
absorption and hence features a nonzero imaginary part n; of the complex refractive index. If we
interpret the imaginary part as a small perturbation of an ideal lossless waveguide, we can calculate
the corresponding change of the dielectric permittivity € = egn® = e (n — jni)> ~ egn? — j €o 2nn;,

Ae = —jeo 2nm;. (6.123)

Inserting this perturbation in Eq. (6.93)), we can derive an equation for the power decay of the
v-th waveguide mode,
04, 1
oz 2

ay A, (6.124)
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where the modal power attenuation coefficient «,, is given by

UJEO

(z,9) ni (z,y) 1€, (x,y) dady. (6.125)

Eq. (6.124) is solved by an exponentially decaying power profile,

A, (2)* = |4, (0)]* e (6.126)

If only a certain region the waveguide core is subject to material absorption (“loss region”; L.r. in
the following), and if the imaginary part of the complex refractive index is constant within this
part (n; (x,y) = n; within the lossy region, n; (z,y) = 0 elsewhere), the modal power attenuation
coefficient o, is related to the material absorption ., = 2kgn; by

Qy = Fuama (6127)

where I, is the so-called field confinement factor,

WEepMN.r.
I, = dzdy, 6.128
s // (@, y)*dzdy (6.128)

where || fl .dx dy indicates an integral over the lossy region of the waveguide, and where ny . is
the real part of the refractive index within this region. To obtain the modal loss, the material loss
has hence to be weighted by the field confinement factor I, of the mode field to the lossy region.
I', can hence be thought of as the fraction of power propagating in the region which is affected
by optical loss. For the scalar fields of low index-contrast waveguides, the field confinement factor
can be approximated by

r o~ dhe 12, )P dady
v ff |, (z, y| dzdy

(6.129)

Active waveguides

The same principle can be applied to active waveguides, where only a portion of the cross section
shows optical gain. This is, e.g., the case in lasers and semiconductor optical amplifiers where
inversion is only achieved in a small quantum well region, which covers only a fraction of the
waveguide cross section, Fig.[6.17] Interpreting again the imaginary part of the complex refractive
index as a perturbation of the dielectric profile of the waveguide, we obtain from Eq. a
differential equation for the mode amplitudes,

56‘1” _ %g,,Al,, (6.130)

which leads to an exponential increase of power along z,

|AL(2)%] = |A,(0)%] 92 (6.131)
The modal gain coefficient g, is linked to the material gain g,, by

v = LvGdm, (6132)

where the field confinement factor I, can be interpreted as the fraction of optical power carried
in the gain region (g.r.),

WepNg.r.

I, = dxzd 1
— //g @y dzdy. (6.133)
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Figure 6.17: Modal gain in an active optical waveguide: The waveguide consists of a core region
made from InGaAsP, which is part of a pn-junction operated in forward direction. Within the
waveguide core, population inversion is obtained by sufficiently large external currents. The modal
gain g, is obtained by weighting the material gain g,, of the core region with the corresponding

field confinement factor of the mode, Egs. (6.132)), (6.133), and (6.134)). (Figure adapted from [2])

For scalar mode fields of low-index contrast waveguides, the field confinement factor can be ap-
proximated by

Ml 17 (@ y)* dady
212, (2, y) ) dady

In lasers or optical amplifiers, a typical number for the field confinement factor amounts to 1" ~
20%.

I, (6.134)

6.6 Bent waveguides

Bent waveguides are essential building blocks of integrated optical circuits. In contrast to straight
waveguides, bent waveguide show fundamental radiation loss. An intuitive explanation is given in
Fig.[6.18 The phase front of the guided mode is rotating around the center of the bend. Because
the group velocity of the phase fronts cannot exceed the speed of light (c/n), the phase fronts
must “bend back” and cause radiation. Radiation losses increase exponentially with decreasing
bend radius.

For a theoretical analysis of bent waveguides, we assume weakly inhomogeneous media and
reduce the problem to two dimensions by applying the effective index method, see Section
We can then write the scalar wave equation for the dominant electric field component ¥ in polar
coordinates (7, ¢),

18(T5W(Ta¢)) 1P (rye)

car\" o )T o +kgn® (r) ¥ (r,9) =0 (6.135)

or

A separation ansatz is used to split up the r- and the p-dependence,

U (r,p) =g(r)h(p) (6.136)
This leads to the relation

2 Pglr) | 1 0g0)

g(r) or2  g(r) Or

(6.137)
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Figure 6.18: Phase fronts of light propagating along a waveguide bend: The group velocity of
the phase fronts cannot exceed the speed of light (c/n). Therefore the outer parts of the phase
fronts “bend back” and cause radiation. Radiation losses increase exponentially with decreasing
bend radius. (Figure adapted from [4])

where both sides must be constant. For the ¢-dependence we obtain the general solution

h(p) = Cretifes, (6.138)

which corresponds to wave propagation in the azimuthal direction, i.e., along the bend. Inserting
Eq. (6.138) in Eq. (6.137), we obtain a differential equation for the associated lateral field profile

g(r):

&g (r) , 9g(r)
Py =g =+ (kgn® () = B5) g (r) = 0 (6.139)
To solve this equation for arbitrary index profiles n (1), we use a transformation of the radial
coordinate r,

r= R, eTr u=R;In <£> u,r >0, (6.140)
t

where R; denotes a free parameter of the transformation which should advantageously be chosen
close to the bend radius. The associated mode profile and index profile are denoted by a bar,

g9(r) =g (u(r)) (6.141)
n(r)=mn(u(r)) (6.142)

Inserting Eqs. (6.141)) and (6.142) in Eq. (6.139)), the transformed form of the Helmholtz equation
can be written as

9°g (u)
ou?

where the transformed index profile n; (u) and the transformed propagation constant 3; are given
by

+ (Kgni (w) = B7) g (u) =0 (6.143)

Nt (u) =N (Rt eﬁ"“) Rt 6%7 (6144)
_BPe
By = R (6.145)
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Figure 6.19: Coordinate transformation for a bend waveguide: (a) The original refractive index
profile consists of a circular bend in a step-index waveguide. The radial coordinate r is trans-
formed to a coordinate u by using Eq. (6.140). (b) After transformation, the Helmholtz equation
in the (u, )-coordinate system assumes the same form as in a Cartesian coordinate system if the
refractive index profile n (r) is replaced by the transformed profile n; (u). Propagation in bent
waveguides can therefore be calculated by solving an equivalent straight waveguide with a “de-
formed” refractive index profile. The refractive index of the waveguide is increased for large values
of u, and the respective mode fields are “pressed” towards the outer side of the bend. (Figure
adapted from [4]).

The transformed Helmholtz equation in the (u,p)-coordinate system has exactly the same form
as in a Cartesian coordinate system if the refractive index profile is replaced by the transformed
profile n; (u). Propagation in bent waveguides can therefore be calculated by solving the equivalent
straight waveguide, see Fig.|6.19

To a first-order approximation, the transformation of the index profile according to Eq.
corresponds to a local “tilt” of the index profile of the waveguide. Power leakage will occur from
the guided mode to the region defined by

Br = ne ko <y (u) ko < ny(w) > ney, (6.146)

where n.; denotes effective index of the mode in the transformed waveguide profile. This loss can
be interpreted as ,tunneling of photons through the ,potential barrier defined by the curvature
and the index contrast, see Fig.[6.20] Decreasing the radius of curvature makes the potential
barrier narrower, and power leakage increases exponentially.

Since the mode field will concentrate in the region with highest refractive index, i.e., the mode
will be ,pressed” towards the outer side of the bend by the tilt of the index profile. This leads
to adaptation losses at the transition between the straight and the bent section, which can be
mitigated by a lateral offset at the transition, see Fig. (a). Bend radii as small as 1 um can be
realized with high index-contrast silicon-on-insulator (SOI) waveguides. In this case, numerically
optimized curve designs are needed to avoid losses at the transition of the straight waveguide to the
bend, Fig.[6.21|(b). For wide waveguides and strong curvatures, the mode will entirely be guided
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Figure 6.20: Power leakage in bent waveguides; (a) The transformation of the index profile ac-
cording to Eq. corresponds to a local “tilt” of the index profile. Power is lost by ,tunneling*
of photons from the core region to the region defined by n; (u) > ne, where n.; denotes effective
index of the mode in the transformed waveguide profile. (b) Decreasing the radius of curvature
narrows the “barrier” that confines the photons, and power leakage increases exponentially. (Figure
adapted from [4]).

by the outer contour of the waveguide and the tilt of the index profile, and the inner contour will
not play a role. Such modes are called whispering gallery modes. The width of the waveguide
does no longer play a role in the whispering-gallery regime. If the outer waveguide surfaces are
smooth, whispering-gallery modes feature extremely low losses. They can, e.g., be used to realize
high-Q resonators, see Fig.[6.21(c).
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Figure 6.21: Various bends of integrated optical waveguides; (a) Transition losses between the
straight waveguide section and the bend can be mitigated by a lateral offset of the waveguides
(Figure adapted from [4]) (b) High index-contrast silicon-on-insulator (SOI) waveguides allow
for bend radii as small as 1pum. Numerically optimized curve designs are the needed to avoid
losses at the transition of the straight waveguide to the bend (Figure adapted from [18]); (c¢) For
wide waveguides and strong curvatures, the mode will entirely be guided by the outer contour of
the waveguide, leading to so-called whispering gallery modes. Such modes may exhibit very low
propagation losses, since interaction with a potentially rough sidewall are reduced to a minimum.
Whispering-gallery modes are often used to realize optical resonators with extremely high quality
factors (Figure adapted from [7]).
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Appendix A

Mathematical Definitions and
Conventions

A.1 Time- and Frequency-Domain Quantities

If not otherwise stated, ¢ is the independent time domain variable, and w denotes the corresponding
frequency domain variable. The quantities u(t), v(t), and h(t) are functions in the time domain,

and %(w), ¥(w), and h(w) are the corresponding frequency domain spectra.

A.1.1 Fourier Transformation

The Fourier transform of a function u(t) with respect to the independent variable ¢ is denoted as
Tt {u(t)}. Accordingly, ! {u(w)} refers to the inverse Fourier transform of a function @(w) with

respect to the independent variable w,

—+o0

F {u(t)} = a(w) = / w(t) et dt,
_:O +oo
5 () =) = 5 [ e dw.

The independent variable ¢ usually represents the time, and w is angular frequency.

A.2 Vector calculus

A.2.1 The Nabla operator

Gradient
Oy Ozt
Vi =grady=| 0y | =1 0y
0. 9.9
Example: Ve 1¥T = —jke kT
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Curl

Oy A, OyA, — 0.4,
VxA=rotA=10, | x| A4y | =| 0.4, — 0. A.
0, A, 0, Ay — 0y A,
Example: V x Age  1KT = —jk x Age iK™
Divergence
Oy Ay
V-A=divA= |0, |- | 4y | =0 Az +0,A, + 0. A,
0. A,
Example: V- Age 1¥T = —jk . Age Ik~
Laplacian
A, (2 + 02 +02) A,
VPA=NAA=(02+024+02) | Ay | = | (0240, +0%) A,
A (02+ 074 02) A,

Example: VZAge 15T = (—j)?(k - k)Age kT

A.2.2 Basic formulae of vector differential operators

A short summary of basic relations from vector differential calculus is given in Fig.[AT]

Linearitdt
1. V(ad +B¥ )=a Vo +B V¥
2. V- (aF+BG)=a V- F+B V- G
3. Vx(aF+B G)=a VxXF+pB VxG

Operation auf Produkten
4. V(¥ )= V¥ +v Vo
5. VF-G)=F-V)G+(G - V)F+
+FXx(VxG)+ G x(VxF)
Ve (@F)=0 V- F+(V®) - F
V- (FxG)=G - VXF-F - VxG
Vx(®F)=® VXF +(V® )xF
Vx(FxG)=(G - V)F-(F- V)G +
+F(V-G)-G(V-F)

Zweifache Anwendung von V
10. V- (VxF)=0
11. Vx(Vo)=0
12. Vx (VxF)=V(V-F)-V2F

o PN

grad(o® +B¥ ) =0 grad ® +B grad ¥
div(ac F+ G)=a div F+p div G
rot(a F+B G)=a rot F+B rot G

grad(®¥)=® grad ¥ +V¥ grad @
grad(F - G)=(F - grad)G +

+(G - grad)F + F xrot G+ G xrot F
div(® F)=® divF+F - grad ®
div(FxG)=G *rotF-F - rot G
rot(® F)=® rot F+ (grad ®)xF
rot(F xG) =(G - grad)F -

—(F-grad)G+FdivG-G divF

divrot F=0
rot grad® =0
rot rot F=grad div F-AF

Figure A.1: Basic relations of vector

differential operators (Adapted from [29])
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A.3 Cylindrical coordinates and Bessel differential equations

Koordinatentransformation
X=pcosy, y=psing, 2=z

p= x2 +y%, 0= tan~! % (passender Zweig), z=2

h! = ],hzfp, hgf‘l

| Beziehung zwischen Basisvektoren
; { ey =@, CoS @ - e, Sing

€, =€, Sing +e, cos g
e.=e,

€p=—€, Sing +e, cosy

{ Eo= € m:s:qp +‘ey sing
e.=e,

Figure A.2: Basic relations between cartesian coordinates (z,y,z) and cylindrical coordinates
(p, @, z). For cartesian coordinates, the quantities e,, e,, and e, denote the unit vector in -, y-,
and z-direction. Similarly, for cylindrical coordinates e,, e,, and e, denote the local unit vector
in p-, ¢-, and z-direction. Note that in the remainder of these lecture notes, r is used in lieu of p
to denote the radial coordinate. (Adapted from [29])

¢ +1% e, + e

I
Y
<
I
\l\

grad u

o

5300z ) T 3 )%
1(a(pF@)_ an) o
pl dp op ) ~
o 7]@8“811;4‘182 %u 1 1
A,:V U= 5 8\[}( a_p) +ﬁ2 aqp +az =upp+ E up+uwu-;

Figure A.3: Differential operators in cylindrical coordinates. Note that in the remainder of these
lecture notes, 7 is used in lieu of p to denote the radial coordinate. (Adapted from [29])
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’
y 2
1. x2y11+xyi+(a2x2_p2)y=0<:>y”+.; + az_% y=0 o

l A4 2 p2
e - W)+ |lac-=|y=0
x x2

Losung: y=AJ,(ax)+BY,(ax) [Beachte. IYp(x)l — comit x = 0+]

2

— ’ n
2. X2y +xy'—(a*x*+n?)y=0 & y”+); — |a’+ S|y=0&
X
1 n?
& - Wy)-|a’+=]|y=0
X X2

Losung: y=AI,(ax)+ BK ,(ax)

Figure A.4: Bessel differential equations and the corresponding solutions. The symbol y represents
a function of z, and the prime indicates a derivative with respect to the arguments, y'(z) = %.
J, and Y, denote v-th order Bessel functions of the first and second kind, respectively. Likewise,
I, and K, denote v-th order modified Bessel functions. (Adapted from [29])
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